Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 279, Pages 111–140 (Mi znsl1456)  

This article is cited in 2 scientific papers (total in 2 papers)

Planar Manhattan local minimal and critical networks

A. O. Ivanova, V. L. Hongb, A. A. Tuzhilinc

a N. E. Bauman Moscow State Technical University
b Max Planck Institute for Mathematics in the Sciences
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (329 kB) Citations (2)
Abstract: One-dimensional branching extremals of Lagrangian-type functionals are considered. Such extremals appear as a solutions to the classical Steiner problem on a shortest network, i.e., a connected system of paths that has smallest total length among all the networks spanning a given finite set of terminal points in the plane. In the present paper, the Manhattan-length functional is investigated, with Lagrangian equal to the sum of the absolute values of projections of the velocity vector onto the coordinate axes. Such functionals are useful in problems arising in Electronics, Robotics, chip desing, etc. In this case, in contrast to the case of the Steiner problem, local minimality does not imply extremality (however, each extreme network is locally minimal). A criterion of extremality is presented, which shows that the extrmality with respect to the Manhattan-length functional is a global topological property of networks.
Received: 11.01.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 119, Issue 1, Pages 55–70
DOI: https://doi.org/10.1023/B:JOTH.0000008741.99645.42
Bibliographic databases:
UDC: 514.518
Language: Russian
Citation: A. O. Ivanov, V. L. Hong, A. A. Tuzhilin, “Planar Manhattan local minimal and critical networks”, Geometry and topology. Part 6, Zap. Nauchn. Sem. POMI, 279, POMI, St. Petersburg, 2001, 111–140; J. Math. Sci. (N. Y.), 119:1 (2004), 55–70
Citation in format AMSBIB
\Bibitem{IvaLeTuz01}
\by A.~O.~Ivanov, V.~L.~Hong, A.~A.~Tuzhilin
\paper Planar Manhattan local minimal and critical networks
\inbook Geometry and topology. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 279
\pages 111--140
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1456}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846075}
\zmath{https://zbmath.org/?q=an:1140.90338}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 119
\issue 1
\pages 55--70
\crossref{https://doi.org/10.1023/B:JOTH.0000008741.99645.42}
Linking options:
  • https://www.mathnet.ru/eng/znsl1456
  • https://www.mathnet.ru/eng/znsl/v279/p111
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024