Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 278, Pages 225–247 (Mi znsl1445)  

This article is cited in 11 scientific papers (total in 11 papers)

Conditions of the local asymptotic normality for Gaussian stationary random processes

V. N. Solev, A. Zerbet

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: Let $\mathbf x[\cdot]$ be a stationary Gaussian process with zero mean and spectral density $f$, $\mathscr F$ be the $\sigma$-algebra, induced by random variables $\mathbf x[\varphi],\,\varphi\in D(R^1)$, $\mathscr F_t$, $t>0$, be the $\sigma$-algebra, induced by random variables $\mathbf x[\varphi],\operatorname{supp}\varphi\in[-t,t]$. We denote by $\mathscr P(f)$ the Gaussian measure on $\mathscr F$, generated by $\mathbf x$. Let $\mathscr P_t(f)$ be the restriction of $\mathscr P(f)$ on $\mathscr F_t$. Suppose nonnegative functions $f$ and $g$ are chosen by such a way that measures $\mathscr P_t(f)$ and $\mathscr P_t(g)$ are absolutely continuous and put
$$ \mathscr D_t(f,g)=\ln\frac{d\mathscr P_t(f)}{d\mathscr P_t(g)}\,. $$
For a fixed $g(u)$ and $f(u)=f_t(u)$ close in some sense to $g(u)$ the asymptotic normality of $\mathscr D_t(f,g)$ is proved under some regularity conditions.
Received: 14.06.2001
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 118, Issue 6, Pages 5635–5649
DOI: https://doi.org/10.1023/A:1026102909036
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: V. N. Solev, A. Zerbet, “Conditions of the local asymptotic normality for Gaussian stationary random processes”, Probability and statistics. Part 4, Zap. Nauchn. Sem. POMI, 278, POMI, St. Petersburg, 2001, 225–247; J. Math. Sci. (N. Y.), 118:6 (2003), 5635–5649
Citation in format AMSBIB
\Bibitem{SolZer01}
\by V.~N.~Solev, A.~Zerbet
\paper Conditions of the local asymptotic normality for Gaussian stationary random processes
\inbook Probability and statistics. Part~4
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 278
\pages 225--247
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1445}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874380}
\zmath{https://zbmath.org/?q=an:1066.60041}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 118
\issue 6
\pages 5635--5649
\crossref{https://doi.org/10.1023/A:1026102909036}
Linking options:
  • https://www.mathnet.ru/eng/znsl1445
  • https://www.mathnet.ru/eng/znsl/v278/p225
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024