Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 277, Pages 104–116 (Mi znsl1431)  

This article is cited in 2 scientific papers (total in 2 papers)

A polynomial lower bound for the size of any $k$-min-wise independent set of permutations

S. A. Norin

Saint-Petersburg State University
Full-text PDF (201 kB) Citations (2)
Abstract: The notion of $k$-min-wise independent set of permutations, which was introduced by A. Broder et al., is considered. A nontrivial polynomial lower bound for the smallest size of such sets is obtained.
Received: 01.10.2001
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 118, Issue 2, Pages 4994–5000
DOI: https://doi.org/10.1023/A:1025653423591
Bibliographic databases:
UDC: 519
Language: Russian
Citation: S. A. Norin, “A polynomial lower bound for the size of any $k$-min-wise independent set of permutations”, Computational complexity theory. Part VI, Zap. Nauchn. Sem. POMI, 277, POMI, St. Petersburg, 2001, 104–116; J. Math. Sci. (N. Y.), 118:2 (2003), 4994–5000
Citation in format AMSBIB
\Bibitem{Nor01}
\by S.~A.~Norin
\paper A polynomial lower bound for the size of any $k$-min-wise independent set of permutations
\inbook Computational complexity theory. Part~VI
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 277
\pages 104--116
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1431}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1865899}
\zmath{https://zbmath.org/?q=an:1073.68698}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 118
\issue 2
\pages 4994--5000
\crossref{https://doi.org/10.1023/A:1025653423591}
Linking options:
  • https://www.mathnet.ru/eng/znsl1431
  • https://www.mathnet.ru/eng/znsl/v277/p104
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024