Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 277, Pages 47–52 (Mi znsl1428)  

Double-exponential growth of the number of vectors of solutions of polynomial systems

D. Yu. Grigor'evab

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b University of Rennes 1
Abstract: In [4] it was proved an upper bound $d^{O\left(\left(\smallmatrix n+d\\n\endsmallmatrix\right)\right)}$ on the number of vectors of multiplicities of the solutions of systems of the form $g_1=\ldots=g_n=0$ (provided, it has a finite number of solutions) of polynomials $g_1,\dots,g_n\in F[X_1,\dots,X_n]$ with degrees $\deg g_i\le d$ (the field $F$ is algebraically closed). In the present paper it is shown that this bound is close in order to the exact one. In particular, in case $d=n$ the construction provides a double-exponential (in $n$) number of vectors of multiplicities.
Received: 03.08.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 118, Issue 2, Pages 4963–4965
DOI: https://doi.org/10.1023/A:1025697205844
Bibliographic databases:
UDC: 510
Language: Russian
Citation: D. Yu. Grigor'ev, “Double-exponential growth of the number of vectors of solutions of polynomial systems”, Computational complexity theory. Part VI, Zap. Nauchn. Sem. POMI, 277, POMI, St. Petersburg, 2001, 47–52; J. Math. Sci. (N. Y.), 118:2 (2003), 4963–4965
Citation in format AMSBIB
\Bibitem{Gri01}
\by D.~Yu.~Grigor'ev
\paper Double-exponential growth of the number of vectors of solutions of polynomial systems
\inbook Computational complexity theory. Part~VI
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 277
\pages 47--52
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1865896}
\zmath{https://zbmath.org/?q=an:1095.13548}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 118
\issue 2
\pages 4963--4965
\crossref{https://doi.org/10.1023/A:1025697205844}
Linking options:
  • https://www.mathnet.ru/eng/znsl1428
  • https://www.mathnet.ru/eng/znsl/v277/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024