Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 276, Pages 312–333 (Mi znsl1424)  

This article is cited in 1 scientific paper (total in 1 paper)

Class numbers of indefinite binary quadratic forms

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (257 kB) Citations (1)
Abstract: Let $h(d)$ be the class number of properly equivalent primitive binary quadratic forms $ax^2+bxy+cy^2$ of discriminant $d=b^2-4ac$. The case of indefinite forms $(d<0)$ is considered.
Assuming that the extended Riemann hypothesis for some fields of algebraic numbers holds, the following results are proved.
1. Let $\alpha(x)$ be an arbitrarily slow monotonically increasing function such that $\alpha(x)\to\infty$. Then
$$ \#\biggl\{p\le x\bigg\vert\biggl(\frac5p\biggr)=1,\,h(5p^2)>(\log p)^{\alpha(p)}\biggr\}=o(\pi(x)), $$
where $\pi(x)=\#\{p\le x\}$.
2. Let $F$ be an arbitrary sufficiently large positive constant. Then for $x>x_F$ , the relation
$$ \#\biggl\{p\le x\bigg\vert\biggl(\frac 5p\biggr)=1,\,h(5p^2)>F\biggr\}\asymp\frac{\pi(x)}F $$
holds.
3. The relation
$$ \#\biggl\{p\le x\bigg\vert\biggl(\frac5p\biggr)=1,\,h(5p^2)=2\biggr\}\sim\frac9{19}A\pi(x) $$
holds, where $A$ is Artin's constant.
Hence, for the majority of discriminants of the form $d=5p^2$, where $\bigl(\frac 5p\bigr)=1$, the class numbers are small. This is consistent with the Gauss conjecture concerning the behavior of $h(d)$ for the majority of discriminants $d>0$ in the general case.
Received: 26.03.2001
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 118, Issue 1, Pages 4918–4932
DOI: https://doi.org/10.1023/A:1025589004026
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “Class numbers of indefinite binary quadratic forms”, Analytical theory of numbers and theory of functions. Part 17, Zap. Nauchn. Sem. POMI, 276, POMI, St. Petersburg, 2001, 312–333; J. Math. Sci. (N. Y.), 118:1 (2003), 4918–4932
Citation in format AMSBIB
\Bibitem{Fom01}
\by O.~M.~Fomenko
\paper Class numbers of indefinite binary quadratic forms
\inbook Analytical theory of numbers and theory of functions. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 276
\pages 312--333
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1424}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850375}
\zmath{https://zbmath.org/?q=an:1130.11316}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 118
\issue 1
\pages 4918--4932
\crossref{https://doi.org/10.1023/A:1025589004026}
Linking options:
  • https://www.mathnet.ru/eng/znsl1424
  • https://www.mathnet.ru/eng/znsl/v276/p312
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024