|
Zapiski Nauchnykh Seminarov POMI, 2001, Volume 276, Pages 300–311
(Mi znsl1423)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
On the behavior of automorphic $L$-functions at the center of the critical strip
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $\mathscr F$ be the Hecke eigenbasis of the space $S_2(\Gamma_0(p))$ of $\Gamma_0(p)$-cusp forms of weight 2. Let $p$ be a prime. Let $\mathscr H_f(s)$ be the Hecke $L$-series of form $f\in\mathscr F$. The following statements are proved:
$$
\sum_{f\in\mathscr F}\mathscr H_f\left(\frac12\right)=\zeta(2)\frac p{12}+O\left(p^{\frac{31}{32}+\varepsilon}\right)
$$
and
$$
\sum_{f\in F}\mathscr H_f\left(\frac12\right)^2=\frac{\zeta(2)^3}{\zeta(4)}\frac p{12}\log p+O(p\log\log p).
$$
We also give a correct proof of a previous author's theorem on automorphic $L$-functions.
Received: 12.02.2001
Citation:
O. M. Fomenko, “On the behavior of automorphic $L$-functions at the center of the critical strip”, Analytical theory of numbers and theory of functions. Part 17, Zap. Nauchn. Sem. POMI, 276, POMI, St. Petersburg, 2001, 300–311; J. Math. Sci. (N. Y.), 118:1 (2003), 4910–4917
Linking options:
https://www.mathnet.ru/eng/znsl1423 https://www.mathnet.ru/eng/znsl/v276/p300
|
Statistics & downloads: |
Abstract page: | 203 | Full-text PDF : | 56 |
|