Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 276, Pages 300–311 (Mi znsl1423)  

This article is cited in 9 scientific papers (total in 9 papers)

On the behavior of automorphic $L$-functions at the center of the critical strip

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (206 kB) Citations (9)
Abstract: Let $\mathscr F$ be the Hecke eigenbasis of the space $S_2(\Gamma_0(p))$ of $\Gamma_0(p)$-cusp forms of weight 2. Let $p$ be a prime. Let $\mathscr H_f(s)$ be the Hecke $L$-series of form $f\in\mathscr F$. The following statements are proved:
$$ \sum_{f\in\mathscr F}\mathscr H_f\left(\frac12\right)=\zeta(2)\frac p{12}+O\left(p^{\frac{31}{32}+\varepsilon}\right) $$
and
$$ \sum_{f\in F}\mathscr H_f\left(\frac12\right)^2=\frac{\zeta(2)^3}{\zeta(4)}\frac p{12}\log p+O(p\log\log p). $$
We also give a correct proof of a previous author's theorem on automorphic $L$-functions.
Received: 12.02.2001
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 118, Issue 1, Pages 4910–4917
DOI: https://doi.org/10.1023/A:1025537019956
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “On the behavior of automorphic $L$-functions at the center of the critical strip”, Analytical theory of numbers and theory of functions. Part 17, Zap. Nauchn. Sem. POMI, 276, POMI, St. Petersburg, 2001, 300–311; J. Math. Sci. (N. Y.), 118:1 (2003), 4910–4917
Citation in format AMSBIB
\Bibitem{Fom01}
\by O.~M.~Fomenko
\paper On the behavior of automorphic $L$-functions at the center of the critical strip
\inbook Analytical theory of numbers and theory of functions. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 276
\pages 300--311
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1423}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850374}
\zmath{https://zbmath.org/?q=an:1130.11318}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 118
\issue 1
\pages 4910--4917
\crossref{https://doi.org/10.1023/A:1025537019956}
Linking options:
  • https://www.mathnet.ru/eng/znsl1423
  • https://www.mathnet.ru/eng/znsl/v276/p300
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024