Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 276, Pages 291–299 (Mi znsl1422)  

The representation of integers by positive quaternary quadratic forms

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: Let $f(x,y,x,w)=x^2+y^2+z^2+D\omega^2$, where $D>1$ is an integer such that $D\ne d^2$ and $\sqrt{\mathstrut n}\big/\sqrt{\mathstrut D}=n^{\theta},0<\theta<1/2$. Let $r_f(n)$ be the number of representations of $n$ by $f$. It is proved that
$$ r_f (n)=\pi^2\frac n{\sqrt D}\sigma_f(n)+O\biggl(\frac{n^{1+\varepsilon-c(\theta)}}{\sqrt D}\biggr), $$
where $\sigma_f(n)$ is the singular series, $c(\theta)>0$, and $\varepsilon$ is an arbitrarily small positive constant.
Received: 12.02.2001
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 118, Issue 1, Pages 4904–4909
DOI: https://doi.org/10.1023/A:1025584903118
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “The representation of integers by positive quaternary quadratic forms”, Analytical theory of numbers and theory of functions. Part 17, Zap. Nauchn. Sem. POMI, 276, POMI, St. Petersburg, 2001, 291–299; J. Math. Sci. (N. Y.), 118:1 (2003), 4904–4909
Citation in format AMSBIB
\Bibitem{Fom01}
\by O.~M.~Fomenko
\paper The representation of integers by positive quaternary quadratic forms
\inbook Analytical theory of numbers and theory of functions. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 276
\pages 291--299
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1422}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850373}
\zmath{https://zbmath.org/?q=an:1130.11314}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 118
\issue 1
\pages 4904--4909
\crossref{https://doi.org/10.1023/A:1025584903118}
Linking options:
  • https://www.mathnet.ru/eng/znsl1422
  • https://www.mathnet.ru/eng/znsl/v276/p291
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024