Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 276, Pages 253–275 (Mi znsl1420)  

This article is cited in 17 scientific papers (total in 17 papers)

Problems of extremal decomposition of the Riemann sphere

G. V. Kuz'mina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: We apply a variant of the method of the extremal metric to some problems concerning extremal decompositions and related problems. Let $\mathbf a=\{a_1,\dots,a_n\}$ be a system of distinct points on $\overline{\mathbb C}$ and let $\mathscr D(\mathbf a)$ be the family of all systems $\mathbb D=\{D_1,\dots,D_n\}$ of nonoverlapping simply connected domains on $\overline{\mathbb C}$ such that $a_k\in D_k, k=1,\dots,n$. Let
$$ J(a)=\max\limits_{\mathbb D\subset\mathscr D(\mathbf a)}\biggl\{2\pi\sum_{k=1}^nM(D_k,a_k)-\frac2{n-1}\sum_{1\le k<l\le n}\log|a_k-a_l|\biggr\}, $$
where $M(D_k,a_k)$ is the reduced module of the domain $D_k$ with respect to the point $a_k$. At present, the problem concerning the value $\max\limits_{\mathbf a}J(a)$ was solved completely for $n=2,3,4$. In this work, we continue the previous author's investigations and consider the case $n=5$. In addition, we consider the problem concerning the maximum of the sum
$$ \alpha^2\bigl\{M(D_0,0)+M(D_{n+1},\infty)\bigr\}+\sum_{k=1}^nM(D_k,a_k) $$
in the family $\mathscr D(\mathbf a)$ introduced above, where $\mathbf a=\{0,a_1,\dots,a_n,\infty\}$, $a_k$, $k=1,\dots,n$, are arbitrary points of the circle $|z|=1$, and $\alpha$ is a positive number. We prove that if $\alpha/n\le1/\sqrt8$, then the maximum is attained $\alpha$ only for systems of equidistant points of the circle $|z|=1$. For $\alpha/n=1/\sqrt8$, this result was obtained earlier by Dubinin who applied the method of symmetrization. It is shown that if $n\ge2$, where $\alpha/n\ge1/2$ is an even number, then equidistant points of the circle $|z|=1$ do not realize the indicated maximum.
Received: 15.03.2001
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 118, Issue 1, Pages 4880–4894
DOI: https://doi.org/10.1023/A:1025580802209
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: G. V. Kuz'mina, “Problems of extremal decomposition of the Riemann sphere”, Analytical theory of numbers and theory of functions. Part 17, Zap. Nauchn. Sem. POMI, 276, POMI, St. Petersburg, 2001, 253–275; J. Math. Sci. (N. Y.), 118:1 (2003), 4880–4894
Citation in format AMSBIB
\Bibitem{Kuz01}
\by G.~V.~Kuz'mina
\paper Problems of extremal decomposition of the Riemann sphere
\inbook Analytical theory of numbers and theory of functions. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 276
\pages 253--275
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1420}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850371}
\zmath{https://zbmath.org/?q=an:1071.30022}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 118
\issue 1
\pages 4880--4894
\crossref{https://doi.org/10.1023/A:1025580802209}
Linking options:
  • https://www.mathnet.ru/eng/znsl1420
  • https://www.mathnet.ru/eng/znsl/v276/p253
    Cycle of papers
    This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024