Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 276, Pages 83–111 (Mi znsl1413)  

This article is cited in 5 scientific papers (total in 5 papers)

Extremal problems in the function theory associated with the $n$-fold symmetry

V. N. Dubinin, E. V. Kostyuchenko

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
Full-text PDF (322 kB) Citations (5)
Abstract: We consider some conventional problems of the theory of functions of a complex variable such that their extremal configurations have the $n$-fold symmetry. We discuss two-point distortion theorems corresponding to the two-fold symmetry. New estimates are obtained for the module of a doubly connected domain. These estimates generalize known results by Rengel, Grötzsch, and Teichmüller to the case of rings with the $n$-fold symmetry, where $n\ge2$. New distortion theorems are proved for functions meromorphic and univalent in a disk or in a ring. In these theorems, the extremal function also has the corresponding symmetry. All of the problems mentioned above are unified by the method applied; this method is based on properties of the conformal capacity and on symmetrization.
Received: 19.07.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 118, Issue 1, Pages 4778–4794
DOI: https://doi.org/10.1023/A:1025516415413
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: V. N. Dubinin, E. V. Kostyuchenko, “Extremal problems in the function theory associated with the $n$-fold symmetry”, Analytical theory of numbers and theory of functions. Part 17, Zap. Nauchn. Sem. POMI, 276, POMI, St. Petersburg, 2001, 83–111; J. Math. Sci. (N. Y.), 118:1 (2003), 4778–4794
Citation in format AMSBIB
\Bibitem{DubKos01}
\by V.~N.~Dubinin, E.~V.~Kostyuchenko
\paper Extremal problems in the function theory associated with the $n$-fold symmetry
\inbook Analytical theory of numbers and theory of functions. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 276
\pages 83--111
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850364}
\zmath{https://zbmath.org/?q=an:1071.30021}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 118
\issue 1
\pages 4778--4794
\crossref{https://doi.org/10.1023/A:1025516415413}
Linking options:
  • https://www.mathnet.ru/eng/znsl1413
  • https://www.mathnet.ru/eng/znsl/v276/p83
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024