Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 275, Pages 140–164 (Mi znsl1398)  

This article is cited in 4 scientific papers (total in 4 papers)

The effective model of porous block medium with slide contact on interfaces

L. A. Molotkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (292 kB) Citations (4)
Abstract: The medium under consideration consists of equal rectangle cells. The every cell contains four rectangle porous blocks with slide contact on interfaces between blocks. For this medium the effective model is established. This effective model is described by thirteen equations, is five-phase, and consists of four elastic phases and one fluid phase. In this model five waves propagate. The fronts of three waves are convex but two waves have concave fronts. The velocities of the waves along the axes are roots of equations which are derived in the paper.
Received: 20.01.2001
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 117, Issue 2, Pages 3968–3981
DOI: https://doi.org/10.1023/A:1024675010364
Bibliographic databases:
UDC: 550.34
Language: Russian
Citation: L. A. Molotkov, “The effective model of porous block medium with slide contact on interfaces”, Mathematical problems in the theory of wave propagation. Part 30, Zap. Nauchn. Sem. POMI, 275, POMI, St. Petersburg, 2001, 140–164; J. Math. Sci. (N. Y.), 117:2 (2003), 3968–3981
Citation in format AMSBIB
\Bibitem{Mol01}
\by L.~A.~Molotkov
\paper The effective model of porous block medium with slide contact on interfaces
\inbook Mathematical problems in the theory of wave propagation. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 275
\pages 140--164
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1398}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1854507}
\zmath{https://zbmath.org/?q=an:1062.74553}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 117
\issue 2
\pages 3968--3981
\crossref{https://doi.org/10.1023/A:1024675010364}
Linking options:
  • https://www.mathnet.ru/eng/znsl1398
  • https://www.mathnet.ru/eng/znsl/v275/p140
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024