Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 272, Pages 321–340 (Mi znsl1380)  

This article is cited in 5 scientific papers (total in 5 papers)

Multilinear Lie quantum operations

V. K. Kharchenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (265 kB) Citations (5)
Abstract: In is proved that if the existence condition is fulfilled the dimension of the all $n$-linear Lie quantum operations is lying between $(n-2)!$ and $(n-1)!$; moreover, the low bound is attained if the intersection of all consistent (i.e., satisfying the existence condition) subsets of a given set of “quantum” variables is nonemply. The upper bound is attained if all the subsets are consistents. The space of multilinear Lie quantum operations almost aloways is generated by symmetric operations. All exceptional cases are given. In particular, the space of general $n$-linear Lie operations is always generated by general symmetric Lie quantum operations.
Received: 28.06.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 116, Issue 1, Pages 3063–3073
DOI: https://doi.org/10.1023/A:1023427532033
Bibliographic databases:
UDC: 512.815.6
Language: Russian
Citation: V. K. Kharchenko, “Multilinear Lie quantum operations”, Problems in the theory of representations of algebras and groups. Part 7, Zap. Nauchn. Sem. POMI, 272, POMI, St. Petersburg, 2000, 321–340; J. Math. Sci. (N. Y.), 116:1 (2003), 3063–3073
Citation in format AMSBIB
\Bibitem{Kha00}
\by V.~K.~Kharchenko
\paper Multilinear Lie quantum operations
\inbook Problems in the theory of representations of algebras and groups. Part~7
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 272
\pages 321--340
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1811811}
\zmath{https://zbmath.org/?q=an:1106.17019}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 116
\issue 1
\pages 3063--3073
\crossref{https://doi.org/10.1023/A:1023427532033}
Linking options:
  • https://www.mathnet.ru/eng/znsl1380
  • https://www.mathnet.ru/eng/znsl/v272/p321
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024