|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 272, Pages 286–293
(Mi znsl1377)
|
|
|
|
On a theorem of Grothendieck
I. A. Panin, A. L. Smirnov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
It is considered a smooth projective morphism $p\colon T\to S$ to a smooth variety $S$. It is proved, in particular, the following result. The total direct image $Rp_*(\mathbb Z/n\mathbb Z)$ of the constant étale sheaf $\mathbb Z/n\mathbb Z$ is locally for Zariski topology quasi-isomorphic to a bounded complex $\mathscr L$ on $S$ consisting of locally constant constructible étale $\mathbb Z/n\mathbb Z$-module sheaves.
Received: 10.09.2000
Citation:
I. A. Panin, A. L. Smirnov, “On a theorem of Grothendieck”, Problems in the theory of representations of algebras and groups. Part 7, Zap. Nauchn. Sem. POMI, 272, POMI, St. Petersburg, 2000, 286–293; J. Math. Sci. (N. Y.), 116:1 (2003), 3042–3046
Linking options:
https://www.mathnet.ru/eng/znsl1377 https://www.mathnet.ru/eng/znsl/v272/p286
|
Statistics & downloads: |
Abstract page: | 377 | Full-text PDF : | 101 |
|