Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 272, Pages 144–160 (Mi znsl1366)  

This article is cited in 1 scientific paper (total in 1 paper)

The Hilbert-Poincare series for some algebras of invariants of cyclic groups

N. L. Gordeev

Herzen State Pedagogical University of Russia
Full-text PDF (205 kB) Citations (1)
Abstract: Let $\rho$ be a linear representation of a finite group over a field of characteristic 0. Further, let $R_{\rho}$ be the corresponding algebra of invariants and let $P_{\rho}(t)$ be its Hilbert-Poincare series. Then the series $P_{\rho}(t)$ presents a rational function $\Psi(t)/\Theta(t)$. If $R_{\rho}$ is a complete intersection then $\Psi(t)$ is a product of cyclotomic polynomials. Here we prove the inverse statement for the case when $\rho$ is “almost regular” (in particular, regular) representation of a cyclic group. It gives the answer to a question of R. Stanley in this very particular case.
Received: 04.05.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 116, Issue 1, Pages 2961–2971
DOI: https://doi.org/10.1023/A:1023498625673
Bibliographic databases:
UDC: 512.743+512.547
Language: English
Citation: N. L. Gordeev, “The Hilbert-Poincare series for some algebras of invariants of cyclic groups”, Problems in the theory of representations of algebras and groups. Part 7, Zap. Nauchn. Sem. POMI, 272, POMI, St. Petersburg, 2000, 144–160; J. Math. Sci. (N. Y.), 116:1 (2003), 2961–2971
Citation in format AMSBIB
\Bibitem{Gor00}
\by N.~L.~Gordeev
\paper The Hilbert-Poincare series for some algebras of invariants of cyclic groups
\inbook Problems in the theory of representations of algebras and groups. Part~7
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 272
\pages 144--160
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1366}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1811796}
\zmath{https://zbmath.org/?q=an:1073.13502}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 116
\issue 1
\pages 2961--2971
\crossref{https://doi.org/10.1023/A:1023498625673}
Linking options:
  • https://www.mathnet.ru/eng/znsl1366
  • https://www.mathnet.ru/eng/znsl/v272/p144
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024