|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 272, Pages 68–85
(Mi znsl1363)
|
|
|
|
This article is cited in 23 scientific papers (total in 23 papers)
Overgroups of $\mathrm{EO}(2l,R)$
N. A. Vavilov, V. A. Petrov Saint-Petersburg State University
Abstract:
Let $R$ be a commutative ring with 1, $2\in R^*$, and $l\ge 3$. We describe subgroups of the general linear group $\mathrm{GL}(n,R)$ containing the split elementary orthogonal group $\mathrm{EO}(2l,R)$. For every
intermediate subgroup $H$ there exists a unique maximal ideal $A\unlhd R$ such that $E(2l,R,A)\le H$, and moreover $H$ normalises $\mathrm{EO}(2l,R)E(2l,R,A)$. In the case when $R=K$ is a field, similar results have been obtained earlier by Dye, King, Li Shangzhi and Bashkirov.
Received: 10.06.2000
Citation:
N. A. Vavilov, V. A. Petrov, “Overgroups of $\mathrm{EO}(2l,R)$”, Problems in the theory of representations of algebras and groups. Part 7, Zap. Nauchn. Sem. POMI, 272, POMI, St. Petersburg, 2000, 68–85; J. Math. Sci. (N. Y.), 116:1 (2003), 2917–2925
Linking options:
https://www.mathnet.ru/eng/znsl1363 https://www.mathnet.ru/eng/znsl/v272/p68
|
Statistics & downloads: |
Abstract page: | 435 | Full-text PDF : | 171 |
|