Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 271, Pages 92–113 (Mi znsl1350)  

This article is cited in 8 scientific papers (total in 9 papers)

Classical solvability of a model problem in a half-space related to the motion of an isolated mass of a compressible liquid

I. V. Denisovaa, V. A. Solonnikovb

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (282 kB) Citations (9)
Abstract: The unique solvability of a linear half-space problem is obtained in the Hölder classes of functions in an arbitrary finite time interval. The problem arises as a result of the linearization of a free boundary problem for the Navier–Stokes system governing the unsteady motion of a finite compressible liquid mass. The boundary conditions in the linear problem is noncoercive because of the surface tension on the free boundary. This fact is the main difficulty in the study of the problem, the equation being a parabolic system in the sense of Petrovskii with respect to the components of the velocity vector field.
The principal idea of the investigation of the noncoercive linear problem is to reduce it to a parabolic problem corresponding to the zero surface tension and to analyze integral convolution operators arising in this reduction.
Received: 13.11.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 115, Issue 6, Pages 2753–2765
DOI: https://doi.org/10.1023/A:1023365718404
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: I. V. Denisova, V. A. Solonnikov, “Classical solvability of a model problem in a half-space related to the motion of an isolated mass of a compressible liquid”, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Zap. Nauchn. Sem. POMI, 271, POMI, St. Petersburg, 2000, 92–113; J. Math. Sci. (N. Y.), 115:6 (2003), 2753–2765
Citation in format AMSBIB
\Bibitem{DenSol00}
\by I.~V.~Denisova, V.~A.~Solonnikov
\paper Classical solvability of a model problem in a~half-space related to the motion of an isolated mass of a~compressible liquid
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 271
\pages 92--113
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810611}
\zmath{https://zbmath.org/?q=an:1118.76312}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 115
\issue 6
\pages 2753--2765
\crossref{https://doi.org/10.1023/A:1023365718404}
Linking options:
  • https://www.mathnet.ru/eng/znsl1350
  • https://www.mathnet.ru/eng/znsl/v271/p92
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024