Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 271, Pages 83–91 (Mi znsl1349)  

This article is cited in 9 scientific papers (total in 9 papers)

A uniqueness theorem for the dual problem associated to a variational problem with linear growth

M. Bildhauer

Saarland University
Full-text PDF (168 kB) Citations (9)
Abstract: Uniqueness is proved for solutions of the dual problem which is associated to the minimum problem $\int_\Omega f(\nabla u)dx\to\min$ among mappings $u\colon\mathbb R^n\supset\Omega\to\mathbb R^N$ with prescribed Dirichlet boundary data and for smooth strictly convex integrands $f$ of linear growth. No further assumptions on $f$ or its conjugate function $f^*$ are imposed, in particular $f^*$ is not assumed to be strictly convex. One special solution of the dual problem is seen to be a mapping into the image of $\nabla f$ which immediately implies uniqueness.
Received: 20.01.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 115, Issue 6, Pages 2747–2752
DOI: https://doi.org/10.1023/A:1023313701565
Bibliographic databases:
UDC: 517
Language: English
Citation: M. Bildhauer, “A uniqueness theorem for the dual problem associated to a variational problem with linear growth”, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Zap. Nauchn. Sem. POMI, 271, POMI, St. Petersburg, 2000, 83–91; J. Math. Sci. (N. Y.), 115:6 (2003), 2747–2752
Citation in format AMSBIB
\Bibitem{Bil00}
\by M.~Bildhauer
\paper A uniqueness theorem for the dual problem associated to a~variational problem with linear growth
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 271
\pages 83--91
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1349}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810610}
\zmath{https://zbmath.org/?q=an:1027.49016}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 115
\issue 6
\pages 2747--2752
\crossref{https://doi.org/10.1023/A:1023313701565}
Linking options:
  • https://www.mathnet.ru/eng/znsl1349
  • https://www.mathnet.ru/eng/znsl/v271/p83
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024