Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 270, Pages 317–324 (Mi znsl1340)  

The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations

V. A. Sloushch

Saint-Petersburg State University
Abstract: Let $A$ be a selfadjoint operator, $(\alpha,\beta)$ the inner gap in the spectrum of the operator $A$; let $B(t)=A+tW^*W$, where the operator $W(A-iI)^{-1}$ is not necessarily bounded. Conditions are obtained that guarantee that the spectrum of $B(t)$ in $(\alpha,\beta)$ be discrete. Let $N(\lambda,A,W,\tau)$, $\lambda\in(\alpha,\beta)$, $\tau>0$ be the number of eigenvalues of the operator $B(t)$ having passed the point $\lambda\in(\alpha,\beta)$ as $t$ increases from 0 to $\tau$. The asymptotics $N(\lambda,A,W,\tau)$, $\tau\to+\infty$, is obtained in terms of the spectral asymptotics of a certain selfadjoint compact operator.
Received: 30.07.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 115, Issue 2, Pages 2267–2271
DOI: https://doi.org/10.1023/A:1022853308368
Bibliographic databases:
UDC: 517.43
Language: Russian
Citation: V. A. Sloushch, “The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations”, Investigations on linear operators and function theory. Part 28, Zap. Nauchn. Sem. POMI, 270, POMI, St. Petersburg, 2000, 317–324; J. Math. Sci. (N. Y.), 115:2 (2003), 2267–2271
Citation in format AMSBIB
\Bibitem{Slo00}
\by V.~A.~Sloushch
\paper The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations
\inbook Investigations on linear operators and function theory. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 270
\pages 317--324
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1340}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1795652}
\zmath{https://zbmath.org/?q=an:1025.47009}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 115
\issue 2
\pages 2267--2271
\crossref{https://doi.org/10.1023/A:1022853308368}
Linking options:
  • https://www.mathnet.ru/eng/znsl1340
  • https://www.mathnet.ru/eng/znsl/v270/p317
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024