|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 341, Pages 68–80
(Mi znsl134)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Limit correlation functions at zero for fixed trace random matrix ensembles
F. Götzea, M. I. Gordinb, A. Levinac a Bielefeld University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c Max Planck Institute for Dynamics and Self-Organization
Abstract:
The large-$N$ limit of the eigenvalue correlation functions is examined in a neighborhood of zero for the spectra of $N\times N-$Hermitian matrices chosen at random from the Hilbert–Schmidt sphere of appropriate radius. Dyson's famous $\sin\pi(t_1-t_2)/\pi(t_1-t_2)$-kernel asymptotics is extended to this class of random matrix ensembles.
Received: 29.03.2007
Citation:
F. Götze, M. I. Gordin, A. Levina, “Limit correlation functions at zero for fixed trace random matrix ensembles”, Probability and statistics. Part 11, Zap. Nauchn. Sem. POMI, 341, POMI, St. Petersburg, 2007, 68–80; J. Math. Sci. (N. Y.), 147:4 (2007), 6884–6890
Linking options:
https://www.mathnet.ru/eng/znsl134 https://www.mathnet.ru/eng/znsl/v341/p68
|
Statistics & downloads: |
Abstract page: | 229 | Full-text PDF : | 66 | References: | 51 |
|