Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 341, Pages 68–80 (Mi znsl134)  

This article is cited in 5 scientific papers (total in 5 papers)

Limit correlation functions at zero for fixed trace random matrix ensembles

F. Götzea, M. I. Gordinb, A. Levinac

a Bielefeld University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c Max Planck Institute for Dynamics and Self-Organization
Full-text PDF (210 kB) Citations (5)
References:
Abstract: The large-$N$ limit of the eigenvalue correlation functions is examined in a neighborhood of zero for the spectra of $N\times N-$Hermitian matrices chosen at random from the Hilbert–Schmidt sphere of appropriate radius. Dyson's famous $\sin\pi(t_1-t_2)/\pi(t_1-t_2)$-kernel asymptotics is extended to this class of random matrix ensembles.
Received: 29.03.2007
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 147, Issue 4, Pages 6884–6890
DOI: https://doi.org/10.1007/s10958-007-0511-9
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: F. Götze, M. I. Gordin, A. Levina, “Limit correlation functions at zero for fixed trace random matrix ensembles”, Probability and statistics. Part 11, Zap. Nauchn. Sem. POMI, 341, POMI, St. Petersburg, 2007, 68–80; J. Math. Sci. (N. Y.), 147:4 (2007), 6884–6890
Citation in format AMSBIB
\Bibitem{GotGorLev07}
\by F.~G\"otze, M.~I.~Gordin, A.~Levina
\paper Limit correlation functions at zero for fixed trace random matrix ensembles
\inbook Probability and statistics. Part~11
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 341
\pages 68--80
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2363585}
\zmath{https://zbmath.org/?q=an:1153.60026}
\elib{https://elibrary.ru/item.asp?id=9593761}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 147
\issue 4
\pages 6884--6890
\crossref{https://doi.org/10.1007/s10958-007-0511-9}
\elib{https://elibrary.ru/item.asp?id=13544165}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36048930161}
Linking options:
  • https://www.mathnet.ru/eng/znsl134
  • https://www.mathnet.ru/eng/znsl/v341/p68
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :66
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024