Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 270, Pages 258–276 (Mi znsl1336)  

Tight-binding approximation on the lemniscate

V. L. Oleinik

St. Petersburg State University, Faculty of Physics
Abstract: In this paper, we consider a first order linear homogeneous difference equation with a periodic coefficient and a complex parameter, $f(n+1)+a(n)f(n)=zf(n)$, $n\in\mathbb Z$. The set of stability $s_a$ of the equation is known to coincide with a lemniscate which is determined by the finite set of values of the coefficient $a(n)$. The function $a(n)$ is composed of a sum of two periodic functions, $a(n)=a_1(n)+a_2(n)$, where $a_1$ is a fixed function and $a_2$ is a sum of shifts of a given finite function. By analogy with the quantum solid state theory, the asymptotic behavior of the set $s_a$ is discussed as the period of the function $a_2$ tends to infinity.
Received: 12.04.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 115, Issue 2, Pages 2233–2242
DOI: https://doi.org/10.1023/A:1022845106551
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. L. Oleinik, “Tight-binding approximation on the lemniscate”, Investigations on linear operators and function theory. Part 28, Zap. Nauchn. Sem. POMI, 270, POMI, St. Petersburg, 2000, 258–276; J. Math. Sci. (N. Y.), 115:2 (2003), 2233–2242
Citation in format AMSBIB
\Bibitem{Ole00}
\by V.~L.~Oleinik
\paper Tight-binding approximation on the lemniscate
\inbook Investigations on linear operators and function theory. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 270
\pages 258--276
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1795648}
\zmath{https://zbmath.org/?q=an:1025.47018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 115
\issue 2
\pages 2233--2242
\crossref{https://doi.org/10.1023/A:1022845106551}
Linking options:
  • https://www.mathnet.ru/eng/znsl1336
  • https://www.mathnet.ru/eng/znsl/v270/p258
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024