|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 270, Pages 175–200
(Mi znsl1332)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Polynomial approximation in the $L^p$-metric on disjoint segments
N. Yu. Krasheninnikovaa, N. A. Shirokovb a Russian State Pedagogical University of Herzen, Department of Mathematics
b Saint-Petersburg State Electrotechnical University
Abstract:
The function Sobolev class on the union of a finite number of disjoint segments is described in terms of the rate of polynomial approximation.
Received: 14.02.2000
Citation:
N. Yu. Krasheninnikova, N. A. Shirokov, “Polynomial approximation in the $L^p$-metric on disjoint segments”, Investigations on linear operators and function theory. Part 28, Zap. Nauchn. Sem. POMI, 270, POMI, St. Petersburg, 2000, 175–200; J. Math. Sci. (N. Y.), 115:2 (2003), 2183–2198
Linking options:
https://www.mathnet.ru/eng/znsl1332 https://www.mathnet.ru/eng/znsl/v270/p175
|
Statistics & downloads: |
Abstract page: | 210 | Full-text PDF : | 73 |
|