Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 270, Pages 103–123 (Mi znsl1330)  

Extension of operators defined on reflexive subspaces of $L^1$ and $L^1/H^1$

S. V. Kislyakov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: Inperpolation theory is used to develop a general pattern for proving extension theorems mentioned in the title. In the case where the range space $G$ is a $w^*$-closed subspace of $L^\infty$ or $H^\infty$ with reflexive annihilator $F$, a necessary and sufficient condition on $G$ is found for such an extension to be always possible. Specifically, $F$ must be Hilbertian and become complemented in $L^p$ $(1<p\le2)$ after a suitable change of density.
Received: 28.07.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 115, Issue 2, Pages 2147–2156
DOI: https://doi.org/10.1023/A:1022832703825
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: S. V. Kislyakov, “Extension of operators defined on reflexive subspaces of $L^1$ and $L^1/H^1$”, Investigations on linear operators and function theory. Part 28, Zap. Nauchn. Sem. POMI, 270, POMI, St. Petersburg, 2000, 103–123; J. Math. Sci. (N. Y.), 115:2 (2003), 2147–2156
Citation in format AMSBIB
\Bibitem{Kis00}
\by S.~V.~Kislyakov
\paper Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$
\inbook Investigations on linear operators and function theory. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 270
\pages 103--123
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1795642}
\zmath{https://zbmath.org/?q=an:1037.46016}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 115
\issue 2
\pages 2147--2156
\crossref{https://doi.org/10.1023/A:1022832703825}
Linking options:
  • https://www.mathnet.ru/eng/znsl1330
  • https://www.mathnet.ru/eng/znsl/v270/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024