|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 270, Pages 51–79
(Mi znsl1327)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Mixed Stekloff eigenvalue problem and new extremal properties of the Grötzsch ring
B. Dittmara, A. Yu. Solyninb a Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We study the mixed Stekloff eigenvalue problem in doubly-connected domains. Using circular symmetrization and a distortion theorem on conformal mapping of an annulus, we find a lower bound for the first eigenvalue that is sharp for the Grötzsch ring. We solve also an extremal problem for some polygonal doubly-connected domains and prove some results concerning the existence of a closed nodal line.
Received: 03.04.2000
Citation:
B. Dittmar, A. Yu. Solynin, “Mixed Stekloff eigenvalue problem and new extremal properties of the Grötzsch ring”, Investigations on linear operators and function theory. Part 28, Zap. Nauchn. Sem. POMI, 270, POMI, St. Petersburg, 2000, 51–79; J. Math. Sci. (N. Y.), 115:2 (2003), 2119–2134
Linking options:
https://www.mathnet.ru/eng/znsl1327 https://www.mathnet.ru/eng/znsl/v270/p51
|
Statistics & downloads: |
Abstract page: | 259 | Full-text PDF : | 137 |
|