Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 270, Pages 7–18 (Mi znsl1325)  

Description of hyperinvariant subspaces of a contraction in terms of its characteristic function

V. I. Vasyunin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: If $T$ is a completely nonunitary contraction on a Hilbert space and $L$ is its invariant subspace corresponding to a regular factorizations of its characteristic function $\Theta=\Theta'\Theta''$, then $L$ is hyperinvariant if and only if the following two conditions are fulfilled:
    \item[$1\circ)$] $\operatorname{supp}\Delta'_*\cap\operatorname{supp}\Delta''$ is of Lebesgue measure zero;
    \item[$2\circ)$] for every pair $A\in H^{\infty}(E\to E)$, $A_*\in H^{\infty}({E_*}\to{E_*})$ intertwinned by $\Theta$, i.e., such that $\Theta A=A_*\Theta$, there exists a function $A_F\in H^{\infty}(F\to F)$ intertwinned by $\Theta'$ with $A$ and by $\Theta'$ with $A$ and by $\Theta''$ with $A_*$, i.e., $\Theta'A=A_F\Theta'$, $\Theta'' A_F=A_*\Theta''$.
Received: 20.03.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 115, Issue 2, Pages 2093–2099
DOI: https://doi.org/10.1023/A:1022873617938
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: V. I. Vasyunin, “Description of hyperinvariant subspaces of a contraction in terms of its characteristic function”, Investigations on linear operators and function theory. Part 28, Zap. Nauchn. Sem. POMI, 270, POMI, St. Petersburg, 2000, 7–18; J. Math. Sci. (N. Y.), 115:2 (2003), 2093–2099
Citation in format AMSBIB
\Bibitem{Vas00}
\by V.~I.~Vasyunin
\paper Description of hyperinvariant subspaces of a contraction in terms of its characteristic function
\inbook Investigations on linear operators and function theory. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 270
\pages 7--18
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1795637}
\zmath{https://zbmath.org/?q=an:1025.47004}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 115
\issue 2
\pages 2093--2099
\crossref{https://doi.org/10.1023/A:1022873617938}
Linking options:
  • https://www.mathnet.ru/eng/znsl1325
  • https://www.mathnet.ru/eng/znsl/v270/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024