|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 269, Pages 339–353
(Mi znsl1323)
|
|
|
|
This article is cited in 11 scientific papers (total in 11 papers)
Davenport's theorem in the theory of irregularities of point distribution
W. W. L. Chena, M. M. Skriganovb a Macquarie University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We study distributions ${\mathscr D}_N$ of $N$ points in the unit square $U^2$ with a minimal order of the
$L_2$-discrepancy ${\mathscr L}_2[{\mathscr D}_N]<C(\log N)^{1/2}$, where the constant $C$ is independent of $N$. We introduce an approach using Walsh functions that admits generalization to higher dimensions
Received: 15.06.2000
Citation:
W. W. L. Chen, M. M. Skriganov, “Davenport's theorem in the theory of irregularities of point distribution”, Questions of quantum field theory and statistical physics. Part 16, Zap. Nauchn. Sem. POMI, 269, POMI, St. Petersburg, 2000, 339–353; J. Math. Sci. (N. Y.), 115:1 (2003), 2076–2084
Linking options:
https://www.mathnet.ru/eng/znsl1323 https://www.mathnet.ru/eng/znsl/v269/p339
|
Statistics & downloads: |
Abstract page: | 199 | Full-text PDF : | 75 |
|