Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 269, Pages 151–163 (Mi znsl1312)  

The Selberg $Z$-function and the Lindelöf conjecture

A. I. Vinogradov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: It is proved that, under some assumptions, the Selberg $Z$-function $Z(s)$ is of order $t^\varepsilon/(\sigma-\frac12)$ in a sufficiently small neighborhood of the critical straight line $\sigma>\frac12$, $t\ge1$, and $\varepsilon>0$ is an arbitrary small but fixed.
Received: 24.12.1999
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 115, Issue 1, Pages 1969–1976
DOI: https://doi.org/10.1023/A:1022695628416
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. I. Vinogradov, “The Selberg $Z$-function and the Lindelöf conjecture”, Questions of quantum field theory and statistical physics. Part 16, Zap. Nauchn. Sem. POMI, 269, POMI, St. Petersburg, 2000, 151–163; J. Math. Sci. (N. Y.), 115:1 (2003), 1969–1976
Citation in format AMSBIB
\Bibitem{Vin00}
\by A.~I.~Vinogradov
\paper The Selberg $Z$-function and the Lindel\"of conjecture
\inbook Questions of quantum field theory and statistical physics. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 269
\pages 151--163
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1805858}
\zmath{https://zbmath.org/?q=an:1125.11052}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 115
\issue 1
\pages 1969--1976
\crossref{https://doi.org/10.1023/A:1022695628416}
Linking options:
  • https://www.mathnet.ru/eng/znsl1312
  • https://www.mathnet.ru/eng/znsl/v269/p151
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024