|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 269, Pages 151–163
(Mi znsl1312)
|
|
|
|
The Selberg $Z$-function and the Lindelöf conjecture
A. I. Vinogradov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
It is proved that, under some assumptions, the Selberg $Z$-function $Z(s)$ is of order $t^\varepsilon/(\sigma-\frac12)$ in a sufficiently small neighborhood of the critical straight line $\sigma>\frac12$, $t\ge1$, and $\varepsilon>0$ is an arbitrary small but fixed.
Received: 24.12.1999
Citation:
A. I. Vinogradov, “The Selberg $Z$-function and the Lindelöf conjecture”, Questions of quantum field theory and statistical physics. Part 16, Zap. Nauchn. Sem. POMI, 269, POMI, St. Petersburg, 2000, 151–163; J. Math. Sci. (N. Y.), 115:1 (2003), 1969–1976
Linking options:
https://www.mathnet.ru/eng/znsl1312 https://www.mathnet.ru/eng/znsl/v269/p151
|
Statistics & downloads: |
Abstract page: | 205 | Full-text PDF : | 71 |
|