Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 341, Pages 5–33 (Mi znsl131)  

Asymptotic behavior of the Unit Root Bilinear model with fractional Gaussian noise. Euler's scheme with small perturbations

T. Androshchuk

National Taras Shevchenko University of Kyiv
References:
Abstract: We consider the Unit Root Bilinear model with a sequence of innovations given by the fractional Gaussian noise (increases of the fractional Brownian motion). For such a model we prove a variant of the Donsker–Prohorov limit theorem and obtain convergence of the model in probability to solution of a proper stochastic differential equation with fBm. The proof is based on the result about convergence of the Euler's scheme with ‘small perturbations’ for SDE with fBm, which is also proved.
Received: 20.11.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 147, Issue 4, Pages 6847–6863
DOI: https://doi.org/10.1007/s10958-007-0508-4
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: T. Androshchuk, “Asymptotic behavior of the Unit Root Bilinear model with fractional Gaussian noise. Euler's scheme with small perturbations”, Probability and statistics. Part 11, Zap. Nauchn. Sem. POMI, 341, POMI, St. Petersburg, 2007, 5–33; J. Math. Sci. (N. Y.), 147:4 (2007), 6847–6863
Citation in format AMSBIB
\Bibitem{And07}
\by T.~Androshchuk
\paper Asymptotic behavior of the Unit Root Bilinear
model with fractional Gaussian noise.
Euler's scheme with small perturbations
\inbook Probability and statistics. Part~11
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 341
\pages 5--33
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2363582}
\zmath{https://zbmath.org/?q=an:1125.60050}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 147
\issue 4
\pages 6847--6863
\crossref{https://doi.org/10.1007/s10958-007-0508-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36048934020}
Linking options:
  • https://www.mathnet.ru/eng/znsl131
  • https://www.mathnet.ru/eng/znsl/v341/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :71
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024