Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 268, Pages 86–94 (Mi znsl1292)  

This article is cited in 1 scientific paper (total in 1 paper)

The case of equality in the generalized Wielandt inequality

L. Yu. Kolotilina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (142 kB) Citations (1)
Abstract: This note provides a description of all those pairs of nonzero vectors $x,y\in\mathbb C_n$, $n\ge2$, for which the generalized Wielandt inequality
$$ |x^*Ay|^2\le\Biggr[\frac{\lambda_1-\lambda_n+(\lambda_1+\lambda_n)|\varphi|}{\lambda_1+\lambda_n+(\lambda_1-\lambda_n)|\varphi|}\Biggl]^2x^*Ax\,\,y^*Ay, \ \varphi=\frac{x^*y}{\|x\|\,\|y\|}, $$
where $A\in\mathbb C^{n\times n}$ is an Hermitian positive-definite matrix with eigenvalues $\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n$ such that $\lambda_1>\lambda_n$, holds with equality.
Received: 05.05.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 114, Issue 6, Pages 1803–1807
DOI: https://doi.org/10.1023/A:1022454519330
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “The case of equality in the generalized Wielandt inequality”, Computational methods and algorithms. Part XIV, Zap. Nauchn. Sem. POMI, 268, POMI, St. Petersburg, 2000, 86–94; J. Math. Sci. (N. Y.), 114:6 (2003), 1803–1807
Citation in format AMSBIB
\Bibitem{Kol00}
\by L.~Yu.~Kolotilina
\paper The case of equality in the generalized Wielandt inequality
\inbook Computational methods and algorithms. Part~XIV
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 268
\pages 86--94
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1795850}
\zmath{https://zbmath.org/?q=an:1028.15018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 114
\issue 6
\pages 1803--1807
\crossref{https://doi.org/10.1023/A:1022454519330}
Linking options:
  • https://www.mathnet.ru/eng/znsl1292
  • https://www.mathnet.ru/eng/znsl/v268/p86
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024