|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 268, Pages 86–94
(Mi znsl1292)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
The case of equality in the generalized Wielandt inequality
L. Yu. Kolotilina St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
This note provides a description of all those pairs of nonzero vectors $x,y\in\mathbb C_n$, $n\ge2$, for which the generalized Wielandt inequality
$$
|x^*Ay|^2\le\Biggr[\frac{\lambda_1-\lambda_n+(\lambda_1+\lambda_n)|\varphi|}{\lambda_1+\lambda_n+(\lambda_1-\lambda_n)|\varphi|}\Biggl]^2x^*Ax\,\,y^*Ay, \ \varphi=\frac{x^*y}{\|x\|\,\|y\|},
$$
where $A\in\mathbb C^{n\times n}$ is an Hermitian positive-definite matrix with eigenvalues $\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n$ such that $\lambda_1>\lambda_n$, holds with equality.
Received: 05.05.2000
Citation:
L. Yu. Kolotilina, “The case of equality in the generalized Wielandt inequality”, Computational methods and algorithms. Part XIV, Zap. Nauchn. Sem. POMI, 268, POMI, St. Petersburg, 2000, 86–94; J. Math. Sci. (N. Y.), 114:6 (2003), 1803–1807
Linking options:
https://www.mathnet.ru/eng/znsl1292 https://www.mathnet.ru/eng/znsl/v268/p86
|
Statistics & downloads: |
Abstract page: | 211 | Full-text PDF : | 58 |
|