|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 268, Pages 49–71
(Mi znsl1290)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Lower bounds for the Perron root of a sum of nonnegative matrices
L. Yu. Kolotilina St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $A^{(l)}$ $(l=1,\dots,k)$ be $n\times n$ nonnegative matrices with right and left Perron vectors $u^{(l)}$ and $v^{(l)}$, respectively, and let $D^{(l)}$ and $E^{(l)}$ $(l=1,\dots,k)$ be positive-definite diagonal matrices of the same order. Extending known results, under the assumption that
$$
u^{(1)}\circ v^{(1)}=\dots=u^{(k)}\circ v^{(k)}\ne0
$$
(where "$\circ$" denotes the componentwise, i.e., the Hadamard product of vectors) but without requiring that the matrices $A^{(l)}$ be irreducible, for the Perron root of the sum $\sum^k_{l=1}D^{(l)}A^{(l)}E^{(l)}$ we derive a lower bound of the form
$$
\rho\left(\sum^k_{l=1}D^{(l)}A^{(l)}E^{(l)}\right)\ge\sum^{k}_{l=1}\beta_l\rho(A^{(l)}),\quad\beta_l>0.
$$
Also we prove that, for arbitrary irreducible nonnegative matrices $A^{(l)}$ $(l=1,\ldots,k)$,
$$
\rho\left(\sum^{k}_{l=1}A^{(l)}\right)\ge\sum^k_{l=1}\alpha_l\rho(A^{(l)}),
$$
where the coefficients $\alpha_l>0$ are specified using an arbitrarily chosen normalized positive vector. The cases of equality in both estimates are analyzed, and some other related results are established.
Received: 20.01.2000
Citation:
L. Yu. Kolotilina, “Lower bounds for the Perron root of a sum of nonnegative matrices”, Computational methods and algorithms. Part XIV, Zap. Nauchn. Sem. POMI, 268, POMI, St. Petersburg, 2000, 49–71; J. Math. Sci. (N. Y.), 114:6 (2003), 1780–1793
Linking options:
https://www.mathnet.ru/eng/znsl1290 https://www.mathnet.ru/eng/znsl/v268/p49
|
Statistics & downloads: |
Abstract page: | 232 | Full-text PDF : | 63 |
|