Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 268, Pages 49–71 (Mi znsl1290)  

This article is cited in 1 scientific paper (total in 1 paper)

Lower bounds for the Perron root of a sum of nonnegative matrices

L. Yu. Kolotilina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (242 kB) Citations (1)
Abstract: Let $A^{(l)}$ $(l=1,\dots,k)$ be $n\times n$ nonnegative matrices with right and left Perron vectors $u^{(l)}$ and $v^{(l)}$, respectively, and let $D^{(l)}$ and $E^{(l)}$ $(l=1,\dots,k)$ be positive-definite diagonal matrices of the same order. Extending known results, under the assumption that
$$ u^{(1)}\circ v^{(1)}=\dots=u^{(k)}\circ v^{(k)}\ne0 $$
(where "$\circ$" denotes the componentwise, i.e., the Hadamard product of vectors) but without requiring that the matrices $A^{(l)}$ be irreducible, for the Perron root of the sum $\sum^k_{l=1}D^{(l)}A^{(l)}E^{(l)}$ we derive a lower bound of the form
$$ \rho\left(\sum^k_{l=1}D^{(l)}A^{(l)}E^{(l)}\right)\ge\sum^{k}_{l=1}\beta_l\rho(A^{(l)}),\quad\beta_l>0. $$
Also we prove that, for arbitrary irreducible nonnegative matrices $A^{(l)}$ $(l=1,\ldots,k)$,
$$ \rho\left(\sum^{k}_{l=1}A^{(l)}\right)\ge\sum^k_{l=1}\alpha_l\rho(A^{(l)}), $$
where the coefficients $\alpha_l>0$ are specified using an arbitrarily chosen normalized positive vector. The cases of equality in both estimates are analyzed, and some other related results are established.
Received: 20.01.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 114, Issue 6, Pages 1780–1793
DOI: https://doi.org/10.1023/A:1022450418421
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “Lower bounds for the Perron root of a sum of nonnegative matrices”, Computational methods and algorithms. Part XIV, Zap. Nauchn. Sem. POMI, 268, POMI, St. Petersburg, 2000, 49–71; J. Math. Sci. (N. Y.), 114:6 (2003), 1780–1793
Citation in format AMSBIB
\Bibitem{Kol00}
\by L.~Yu.~Kolotilina
\paper Lower bounds for the Perron root of a~sum of nonnegative matrices
\inbook Computational methods and algorithms. Part~XIV
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 268
\pages 49--71
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1290}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1795848}
\zmath{https://zbmath.org/?q=an:1028.15017}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 114
\issue 6
\pages 1780--1793
\crossref{https://doi.org/10.1023/A:1022450418421}
Linking options:
  • https://www.mathnet.ru/eng/znsl1290
  • https://www.mathnet.ru/eng/znsl/v268/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024