Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 268, Pages 24–48 (Mi znsl1289)  

This article is cited in 8 scientific papers (total in 8 papers)

Bounds for the distance between nearby Jordan and Kronecker structures in a closure hierarchy

E. Elmroth, P. Johansson, B. Kågström

Umeå University, Department of Computing Science
Full-text PDF (340 kB) Citations (8)
Abstract: Computing the fine canonical-structure elements of matrices and matrix pencils are ill-posed problems. Therefore, besides knowing the canonical structure of a matrix or a matrix pencil, it is equally important to know what are the nearby canonical structures that explain the behavior under small perturbations. Qualitative strata information is provided by our StratiGraph tool. Here, we present lower and upper bounds for the distance between Jordan and Kronecker structures in a closure hierarchy of an orbit or a bundle stratification. This quantitative information is of importance in applications, e.g., distance to more degenerate systems (uncontrollability). Our upper bounds are based on staircase regularizing perturbations. The lower bounds are of Eckart-Young type and are derived from a matrix representation of the tangent space of the orbit of a matrix or a matrix pencil. Computational results illustrate the use of the bounds.
Received: 06.10.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 114, Issue 6, Pages 1765–1779
DOI: https://doi.org/10.1023/A:1022498301583
Bibliographic databases:
UDC: 519
Language: English
Citation: E. Elmroth, P. Johansson, B. Kågström, “Bounds for the distance between nearby Jordan and Kronecker structures in a closure hierarchy”, Computational methods and algorithms. Part XIV, Zap. Nauchn. Sem. POMI, 268, POMI, St. Petersburg, 2000, 24–48; J. Math. Sci. (N. Y.), 114:6 (2003), 1765–1779
Citation in format AMSBIB
\Bibitem{ElmJohKag00}
\by E.~Elmroth, P.~Johansson, B.~K{\aa}gstr\"om
\paper Bounds for the distance between nearby Jordan and Kronecker structures in a closure hierarchy
\inbook Computational methods and algorithms. Part~XIV
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 268
\pages 24--48
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1289}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1795847}
\zmath{https://zbmath.org/?q=an:1037.93016}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 114
\issue 6
\pages 1765--1779
\crossref{https://doi.org/10.1023/A:1022498301583}
Linking options:
  • https://www.mathnet.ru/eng/znsl1289
  • https://www.mathnet.ru/eng/znsl/v268/p24
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024