Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 267, Pages 282–289 (Mi znsl1283)  

The fourth oriented cobordism group $\Omega _4$ is isomorphic to $\mathbb Z$

A. Szűcs

Eötvös Loránd University
Abstract: V. A. Rokhlin theorem indicated in the title is proved with using generic maps.
Received: 30.07.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 113, Issue 6, Pages 893–897
DOI: https://doi.org/10.1023/A:1021260023985
Bibliographic databases:
UDC: 515.162+515.164.24
Language: English
Citation: A. Szűcs, “The fourth oriented cobordism group $\Omega _4$ is isomorphic to $\mathbb Z$”, Geometry and topology. Part 5, Zap. Nauchn. Sem. POMI, 267, POMI, St. Petersburg, 2000, 282–289; J. Math. Sci. (N. Y.), 113:6 (2003), 893–897
Citation in format AMSBIB
\Bibitem{Szu00}
\by A.~Sz{\H u}cs
\paper The fourth oriented cobordism group~$\Omega _4$ is isomorphic to~$\mathbb Z$
\inbook Geometry and topology. Part~5
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 267
\pages 282--289
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1283}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1809833}
\zmath{https://zbmath.org/?q=an:1037.57029}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 113
\issue 6
\pages 893--897
\crossref{https://doi.org/10.1023/A:1021260023985}
Linking options:
  • https://www.mathnet.ru/eng/znsl1283
  • https://www.mathnet.ru/eng/znsl/v267/p282
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024