Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 267, Pages 241–259 (Mi znsl1279)  

This article is cited in 1 scientific paper (total in 1 paper)

Quadratic property of the rational semicharacteristic

S. S. Podkorytov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (271 kB) Citations (1)
Abstract: Let $n\equiv1\pmod4$. Let $V$ be a manifold, $\mathbf E_n(V)$ the set of germs of $n$-dimensional oriented submanifolds of $V$, and $!\mathbf E_n(V)$ the $\mathbb Z_2$-module of all $\mathbb Z_2$-valued functions on $\mathbf E_n(V)$. For a oriented submanifold $X^n\subset V$ let $\mathbf1(X)\in!\mathbf E_n(V)$ be the indicator function of the set of germs of $X$.
It is proved that there exists a quadratic map $q\colon!\mathbf E_n(V)\to\mathbb Z_2$ such that for any compact oriented submanifold $X^n\subset V$ one has the relation $q(\mathbf1(X))=\textrm{к}(X)$, where $\textrm{к}(X)$ is the (rational)semicharacteristic of $X^n$, i.e., the residue class defined by the formula
$$ \textrm{к}(X)=\sum_{r\equiv0\pmod2}\dim H_r(X;\mathbb Q)\bmod2\in\mathbb Z_2. $$
Received: 19.02.2000
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 113, Issue 6, Pages 868–878
DOI: https://doi.org/10.1023/A:1021251822168
Bibliographic databases:
UDC: 515.164
Language: Russian
Citation: S. S. Podkorytov, “Quadratic property of the rational semicharacteristic”, Geometry and topology. Part 5, Zap. Nauchn. Sem. POMI, 267, POMI, St. Petersburg, 2000, 241–259; J. Math. Sci. (N. Y.), 113:6 (2003), 868–878
Citation in format AMSBIB
\Bibitem{Pod00}
\by S.~S.~Podkorytov
\paper Quadratic property of the rational semicharacteristic
\inbook Geometry and topology. Part~5
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 267
\pages 241--259
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1809830}
\zmath{https://zbmath.org/?q=an:1032.57025}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 113
\issue 6
\pages 868--878
\crossref{https://doi.org/10.1023/A:1021251822168}
Linking options:
  • https://www.mathnet.ru/eng/znsl1279
  • https://www.mathnet.ru/eng/znsl/v267/p241
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024