|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 267, Pages 241–259
(Mi znsl1279)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Quadratic property of the rational semicharacteristic
S. S. Podkorytov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $n\equiv1\pmod4$. Let $V$ be a manifold, $\mathbf E_n(V)$ the set of germs of $n$-dimensional oriented
submanifolds of $V$, and $!\mathbf E_n(V)$ the $\mathbb Z_2$-module of all $\mathbb Z_2$-valued functions on $\mathbf E_n(V)$. For a oriented submanifold $X^n\subset V$ let $\mathbf1(X)\in!\mathbf E_n(V)$ be the indicator function of the set of germs of $X$.
It is proved that there exists a quadratic map $q\colon!\mathbf E_n(V)\to\mathbb Z_2$ such that for any compact oriented submanifold $X^n\subset V$ one has the relation $q(\mathbf1(X))=\textrm{к}(X)$, where $\textrm{к}(X)$ is the (rational)semicharacteristic of $X^n$, i.e., the residue class defined by the formula
$$
\textrm{к}(X)=\sum_{r\equiv0\pmod2}\dim H_r(X;\mathbb Q)\bmod2\in\mathbb Z_2.
$$
Received: 19.02.2000
Citation:
S. S. Podkorytov, “Quadratic property of the rational semicharacteristic”, Geometry and topology. Part 5, Zap. Nauchn. Sem. POMI, 267, POMI, St. Petersburg, 2000, 241–259; J. Math. Sci. (N. Y.), 113:6 (2003), 868–878
Linking options:
https://www.mathnet.ru/eng/znsl1279 https://www.mathnet.ru/eng/znsl/v267/p241
|
Statistics & downloads: |
Abstract page: | 169 | Full-text PDF : | 84 |
|