Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 267, Pages 207–219 (Mi znsl1277)  

This article is cited in 3 scientific papers (total in 3 papers)

Construction and properties of the $t$-invariant

S. V. Matveev, M. A. Ovchinnikov, M. V. Sokolov

Chelyabinsk State University
Full-text PDF (266 kB) Citations (3)
Abstract: The $t$-invariant is a new invariant of a compact 3-manifold. We construct this invariant by means of special spine theory. Behavior of the $t$-invariant under connected sum and under boundary connected sum is described. One of the Turaev–Viro invariants is expressed through the $t$-invariant. We show that the $t$-invariant fits into the conception of TQFT. We present the values of the $t$-invariant for all closed irreducible orientable 3-manifolds of complexity $\le6$, and for all lens spaces. Also some upper estimate for the number of values of the $t$-invariant of a Seifert manifold over a given closed surface with $n$ exceptional fibers is obtained.
Received: 31.10.1999
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 113, Issue 6, Pages 849–855
DOI: https://doi.org/10.1023/A:1021247621259
Bibliographic databases:
UDC: 515.162.3+515.162.32
Language: Russian
Citation: S. V. Matveev, M. A. Ovchinnikov, M. V. Sokolov, “Construction and properties of the $t$-invariant”, Geometry and topology. Part 5, Zap. Nauchn. Sem. POMI, 267, POMI, St. Petersburg, 2000, 207–219; J. Math. Sci. (N. Y.), 113:6 (2003), 849–855
Citation in format AMSBIB
\Bibitem{MatOvcSok00}
\by S.~V.~Matveev, M.~A.~Ovchinnikov, M.~V.~Sokolov
\paper Construction and properties of the $t$-invariant
\inbook Geometry and topology. Part~5
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 267
\pages 207--219
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1809828}
\zmath{https://zbmath.org/?q=an:1033.57008}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 113
\issue 6
\pages 849--855
\crossref{https://doi.org/10.1023/A:1021247621259}
Linking options:
  • https://www.mathnet.ru/eng/znsl1277
  • https://www.mathnet.ru/eng/znsl/v267/p207
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:301
    Full-text PDF :108
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024