Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 267, Pages 53–87 (Mi znsl1266)  

This article is cited in 7 scientific papers (total in 7 papers)

On isotopic realizability of continuous mappings

P. M. Akhmet'eva, S. A. Melikhovb

a Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
b M. V. Lomonosov Moscow State University
Full-text PDF (401 kB) Citations (7)
Abstract: Under the metastable dimension restriction, we present an algebraic description of the class of discretely realizable maps (i.e., maps that are arbitrarily closely approximable by embeddings) which fail to be isotopically realizable (i.e., to be obtained from an embedding via a pseudo-isotopy). These maps are precisely the ones which yield a negative solution to the Isotopic Realization Problem of E. V. Shchepin (1993), see [1, 27].
A cohomological obstruction for isotopic realizability of a discretely realizable map of an $n$-polyhedron into an orientable PL $m$-manifold is constructed. We also present an obstruction for discrete realizability of a map $S^n\to\mathbb R^m$. If $m>\frac{3(n+1)}2$, these obstructions are shown to be complete. In fact, the latter obstruction can be regarded as an element of the limit of certain inverse spectrum of finitely generated Abelian groups (which are cohomology groups of compact polyhedra with coefficients in a locally constant sheaf), while the first obstruction can be identified with an element of the derived limit of this spectrum. On the other hand, the obstructions generalize the classical van Kampen obstruction for embeddability of an $n$-polyhedron into $\mathbb R^{2n}$.
An explicit construction of a series of discretely but not isotopically realizable maps $S^n\to\mathbb R^{2n}$ is given for $n\geqslant3$. The singular sets of these maps are homeomorphic to the disjoint union of the $p$-adic solenoid, $p\geqslant3$, and a point. Furthermore, it is shown that the Isotopic Realization Problem has positive solution in the metastable range under the assumption of stabilization with codimension 1, or if the configuration singular set $\Sigma(f)=\{(x,y)\in S^n\times S^n\mid f(x)=f(y)\}$ of a map $f\colon S^n\to\mathbb R^m$ is acyclic in dimension $2n-m$ with respect to the Steenrod–Sitnikov homology.
Received: 30.10.1999
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 113, Issue 6, Pages 759–776
DOI: https://doi.org/10.1023/A:1021275032646
Bibliographic databases:
Document Type: Article
UDC: 515.164.6+515.163.6+515.126.2
Language: Russian
Citation: P. M. Akhmet'ev, S. A. Melikhov, “On isotopic realizability of continuous mappings”, Geometry and topology. Part 5, Zap. Nauchn. Sem. POMI, 267, POMI, St. Petersburg, 2000, 53–87; J. Math. Sci. (N. Y.), 113:6 (2003), 759–776
Citation in format AMSBIB
\Bibitem{AkhMel00}
\by P.~M.~Akhmet'ev, S.~A.~Melikhov
\paper On isotopic realizability of continuous mappings
\inbook Geometry and topology. Part~5
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 267
\pages 53--87
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1809817}
\zmath{https://zbmath.org/?q=an:1039.57014}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 113
\issue 6
\pages 759--776
\crossref{https://doi.org/10.1023/A:1021275032646}
Linking options:
  • https://www.mathnet.ru/eng/znsl1266
  • https://www.mathnet.ru/eng/znsl/v267/p53
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024