Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 266, Pages 312–329 (Mi znsl1258)  

This article is cited in 1 scientific paper (total in 1 paper)

Nielsen zeta function, 3-manifolds, and asymptotic expansions in Nielsen theory

A. L. Fel'shtyn

Ernst Moritz Arndt University of Greifswald
Full-text PDF (237 kB) Citations (1)
Abstract: We prove that the Nielsen zeta function is a rational function or a radical of a rational function for orientation- preserving homeomorphisms on closed orientable 3-dimensional manifolds which are special Haken or Seifert manifolds. In the case of pseudo-Anosov homeomorphism of surface we compute an asymptotics for the number of twisted conjugacy classes or for the number of Nielsen fixed point classes whose norm is at most $x$.
Received: 10.10.1999
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 113, Issue 5, Pages 718–727
DOI: https://doi.org/10.1023/A:1021166730828
Bibliographic databases:
UDC: 514.7+517.9
Language: English
Citation: A. L. Fel'shtyn, “Nielsen zeta function, 3-manifolds, and asymptotic expansions in Nielsen theory”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Zap. Nauchn. Sem. POMI, 266, POMI, St. Petersburg, 2000, 312–329; J. Math. Sci. (N. Y.), 113:5 (2003), 718–727
Citation in format AMSBIB
\Bibitem{Fel00}
\by A.~L.~Fel'shtyn
\paper Nielsen zeta function, 3-manifolds, and asymptotic expansions in Nielsen theory
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~V
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 266
\pages 312--329
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774659}
\zmath{https://zbmath.org/?q=an:1028.37018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 113
\issue 5
\pages 718--727
\crossref{https://doi.org/10.1023/A:1021166730828}
Linking options:
  • https://www.mathnet.ru/eng/znsl1258
  • https://www.mathnet.ru/eng/znsl/v266/p312
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024