Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 266, Pages 245–253 (Mi znsl1256)  

Thom isomorphism in the “twice” equivariant $K$-theory of $C^*$-fibrations

E. V. Troitskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract: A theorem on the Thom isomorphism for the $K$-theory of fibrations whose fiber is a projective module over a $C^*$-algebra is proved in the situation where a compact Lie group acts on the algebra and on the total space as well.
Received: 10.10.1999
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 113, Issue 5, Pages 683–688
DOI: https://doi.org/10.1023/A:1021162629920
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: E. V. Troitskii, “Thom isomorphism in the “twice” equivariant $K$-theory of $C^*$-fibrations”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Zap. Nauchn. Sem. POMI, 266, POMI, St. Petersburg, 2000, 245–253; J. Math. Sci. (N. Y.), 113:5 (2003), 683–688
Citation in format AMSBIB
\Bibitem{Tro00}
\by E.~V.~Troitskii
\paper Thom isomorphism in the ``twice'' equivariant $K$-theory of $C^*$-fibrations
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~V
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 266
\pages 245--253
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774657}
\zmath{https://zbmath.org/?q=an:1042.46042|1032.46091}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 113
\issue 5
\pages 683--688
\crossref{https://doi.org/10.1023/A:1021162629920}
Linking options:
  • https://www.mathnet.ru/eng/znsl1256
  • https://www.mathnet.ru/eng/znsl/v266/p245
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024