Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 296, Pages 122–138 (Mi znsl1245)  

This article is cited in 1 scientific paper (total in 1 paper)

The solution of spectral problems for polynomial matrices

V. N. Kublanovskaya

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (211 kB) Citations (1)
References:
Abstract: For polynomial matrices of full rank, including matrices of the form $A-\lambda I$ and $A-\lambda B$, numerical methods for solving the following problems are suggested: find the divisors of a polynomial matrix whose spectra coincide with the roots of known divisors of its characteristic polynomial; compute the greatest common divisor of a sequence of polynomial matrices; solve the inverse eigenvalue problem for a polynomial matrix. The methods proposed are based on the $\Delta W$ and $\Delta V$ factorizations of polynomial matrices. Applications of these methods to the solution of certain algebraic problems are considered.
Received: 10.01.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 127, Issue 3, Pages 2024–2032
DOI: https://doi.org/10.1007/s10958-005-0160-9
Bibliographic databases:
UDC: 519
Language: Russian
Citation: V. N. Kublanovskaya, “The solution of spectral problems for polynomial matrices”, Computational methods and algorithms. Part XVI, Zap. Nauchn. Sem. POMI, 296, POMI, St. Petersburg, 2003, 122–138; J. Math. Sci. (N. Y.), 127:3 (2005), 2024–2032
Citation in format AMSBIB
\Bibitem{Kub03}
\by V.~N.~Kublanovskaya
\paper The solution of spectral problems for polynomial matrices
\inbook Computational methods and algorithms. Part~XVI
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 296
\pages 122--138
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1997603}
\zmath{https://zbmath.org/?q=an:1073.65524}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 127
\issue 3
\pages 2024--2032
\crossref{https://doi.org/10.1007/s10958-005-0160-9}
Linking options:
  • https://www.mathnet.ru/eng/znsl1245
  • https://www.mathnet.ru/eng/znsl/v296/p122
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :154
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024