Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 266, Pages 29–50 (Mi znsl1237)  

This article is cited in 3 scientific papers (total in 3 papers)

Torus actions, equivariant moment-angle complexes, and coordinate subspace arrangements.

V. M. Buchstaber, T. E. Panov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (322 kB) Citations (3)
Abstract: We show that the cohomology algebra of the complement of a coordinate subspace arrangement in $m$-dimensional complex space is isomorphic to the cohomology algebra of Stanley–Reisner face ring of a certain simplicial complex on $m$ vertices. Then we calculate the latter cohomology algebra by means of the standard Koszul resolution of polynomial ring. To prove these facts we construct an equivariant with respect to the torus action homotopy equivalence between the complement of a coordinate subspace arrangement and the moment-angle complex defined by the simplicial complex, then investigate the equivariant topology of the moment-angle complex and apply the Eilenberg–Moore spectral sequence.
Received: 01.12.1999
English version:
Journal of Mathematical Sciences (New York), 2003, Volume 113, Issue 4, Pages 558–568
DOI: https://doi.org/10.1023/A:1021190008538
Bibliographic databases:
Document Type: Article
UDC: 515.14+519.1
Language: Russian
Citation: V. M. Buchstaber, T. E. Panov, “Torus actions, equivariant moment-angle complexes, and coordinate subspace arrangements.”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Zap. Nauchn. Sem. POMI, 266, POMI, St. Petersburg, 2000, 29–50; J. Math. Sci. (N. Y.), 113:4 (2003), 558–568
Citation in format AMSBIB
\Bibitem{BucPan00}
\by V.~M.~Buchstaber, T.~E.~Panov
\paper Torus actions, equivariant moment-angle complexes, and coordinate subspace arrangements.
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~V
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 266
\pages 29--50
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1237}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774646}
\zmath{https://zbmath.org/?q=an:1032.52006|1031.32022}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2003
\vol 113
\issue 4
\pages 558--568
\crossref{https://doi.org/10.1023/A:1021190008538}
Linking options:
  • https://www.mathnet.ru/eng/znsl1237
  • https://www.mathnet.ru/eng/znsl/v266/p29
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:334
    Full-text PDF :108
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024