Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 296, Pages 27–38 (Mi znsl1229)  

This article is cited in 4 scientific papers (total in 4 papers)

On the extreme eigenvalues of block $2\times2$ Hermitian matrices

L. Yu. Kolotilina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (181 kB) Citations (4)
References:
Abstract: The lower bound
$$ \lambda_1(A)-\lambda_n(A)\ge2\|A_{12}\| $$
for the difference of the extreme eigenvalues of an $n\times n$ Hermitian block $2\times2$ matrix $A=\left[\smallmatrix A_{11}&A_{12}\\A^*_{12}&A_{22}\endsmallmatrix\right]$ is established, and conditions necessary and sufficient for this bound to be attained at $A$ are provided. Some corollaries of this result are derived. In particular, for a positive-definite matrix $A$, it is demonstrated that $\lambda_1(A)-\lambda_n(A)=2\|A_{12}\|$ if and only if $A$ is optimally conditioned, and explicit expressions for the extreme eigenvalues of such matrices are obtained.
Received: 22.11.2002
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 127, Issue 3, Pages 1969–1975
DOI: https://doi.org/10.1007/s10958-005-0155-6
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “On the extreme eigenvalues of block $2\times2$ Hermitian matrices”, Computational methods and algorithms. Part XVI, Zap. Nauchn. Sem. POMI, 296, POMI, St. Petersburg, 2003, 27–38; J. Math. Sci. (N. Y.), 127:3 (2005), 1969–1975
Citation in format AMSBIB
\Bibitem{Kol03}
\by L.~Yu.~Kolotilina
\paper On the extreme eigenvalues of block $2\times2$ Hermitian matrices
\inbook Computational methods and algorithms. Part~XVI
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 296
\pages 27--38
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1997199}
\zmath{https://zbmath.org/?q=an:1073.15518}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 127
\issue 3
\pages 1969--1975
\crossref{https://doi.org/10.1007/s10958-005-0155-6}
Linking options:
  • https://www.mathnet.ru/eng/znsl1229
  • https://www.mathnet.ru/eng/znsl/v296/p27
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :68
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024