Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 296, Pages 15–26 (Mi znsl1228)  

Block $LU$ factorization is stable for block matrices whose inverses are block diagonally dominant

A. Georgea, Kh. D. Ikramovb

a David R. Cheriton School of Computer Science, University of Waterloo
b M. V. Lomonosov Moscow State University
References:
Abstract: Let $A\in M_n(\mathbb C)$ and let its inverse $B=A^{-1}$ be represented as an $m\times m$ block matrix that is block diagonally dominant either by rows or by columns w.r.t. a certain matrix norm. We show that $A$ possesses a block $LU$ factorization w.r.t. the partitioning defined by $B$, and the growth factor for $A$ in this factorization is bounded above by $1+\sigma$,where $\sigma=\max_{1\le i\le m}\sigma_i$ and the $\sigma_i$, $0\le\sigma_i\le1$, are the row (column) block dominance factors of $B$. Further, the off-diagonal blocks of $A$ (and of its block Schur complements) satisfy the relations
$$ \|A_{ji}A_{ii}^{-1}\|\le\sigma_j, \qquad j\ne i. $$
Received: 17.03.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 127, Issue 3, Pages 1962–1968
DOI: https://doi.org/10.1007/s10958-005-0154-7
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: A. George, Kh. D. Ikramov, “Block $LU$ factorization is stable for block matrices whose inverses are block diagonally dominant”, Computational methods and algorithms. Part XVI, Zap. Nauchn. Sem. POMI, 296, POMI, St. Petersburg, 2003, 15–26; J. Math. Sci. (N. Y.), 127:3 (2005), 1962–1968
Citation in format AMSBIB
\Bibitem{GeoIkr03}
\by A.~George, Kh.~D.~Ikramov
\paper Block $LU$ factorization is stable for block matrices whose inverses are block diagonally dominant
\inbook Computational methods and algorithms. Part~XVI
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 296
\pages 15--26
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1997198}
\zmath{https://zbmath.org/?q=an:1116.65034}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 127
\issue 3
\pages 1962--1968
\crossref{https://doi.org/10.1007/s10958-005-0154-7}
Linking options:
  • https://www.mathnet.ru/eng/znsl1228
  • https://www.mathnet.ru/eng/znsl/v296/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:711
    Full-text PDF :396
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024