Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 297, Pages 66–92 (Mi znsl1215)  

This article is cited in 8 scientific papers (total in 8 papers)

Gaussian beams, the Hamilton–Jacobi equations and Finsler geometry

A. P. Katchalov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (258 kB) Citations (8)
References:
Abstract: The relationships between Gaussian beams and geometry are considered in the paper. It is shown that the main properties of the Gaussian beam solutions are determined by the natural geometry, related to the problem under considerations. The geometry is determined by the Hamilton–Jacobi equation and corresponding hamiltonian. In particular, it was found a geometric interpretation of the Riccati equation for the quadratic form of the phase function corresponding to the Gaussian beam in the case of Finsler geometry.
Received: 25.01.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 127, Issue 6, Pages 2374–2388
DOI: https://doi.org/10.1007/s10958-005-0186-z
Bibliographic databases:
UDC: 534.226
Language: Russian
Citation: A. P. Katchalov, “Gaussian beams, the Hamilton–Jacobi equations and Finsler geometry”, Mathematical problems in the theory of wave propagation. Part 32, Zap. Nauchn. Sem. POMI, 297, POMI, St. Petersburg, 2003, 66–92; J. Math. Sci. (N. Y.), 127:6 (2005), 2374–2388
Citation in format AMSBIB
\Bibitem{Kac03}
\by A.~P.~Katchalov
\paper Gaussian beams, the Hamilton--Jacobi equations and Finsler geometry
\inbook Mathematical problems in the theory of wave propagation. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 297
\pages 66--92
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1981388}
\zmath{https://zbmath.org/?q=an:1074.35025}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 127
\issue 6
\pages 2374--2388
\crossref{https://doi.org/10.1007/s10958-005-0186-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl1215
  • https://www.mathnet.ru/eng/znsl/v297/p66
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:580
    Full-text PDF :201
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024