Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 297, Pages 30–48 (Mi znsl1213)  

This article is cited in 11 scientific papers (total in 11 papers)

On relations between data of dynamical and spectral inverse problems

M. I. Belishev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: As is well-known, the boundary spectral data of the compact Riemannian manifold determine its boundary dynamical data (the response operator of the wave equation) corresponding to the arbitrary time interval: the response operator is represented in the form of a series over the spectral data. The converse is true in the following sense: the response operator determines the manifold and, thus, its spectral data. For recovering the last, one can recover the manifold and then solve the (direct) boundary spectral problem. Nevertheless, such the way is not efficient and the question arises whether one can extract the spectral data from the response operator without solving the inverse problem (without recovering the manifold). The paper gives a positive answer and proposes a “direct” time-optimal procedure extracting the spectral data from the response operator. The procedure is based upon a variational principle.
Received: 29.01.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 127, Issue 6, Pages 2353–2363
DOI: https://doi.org/10.1007/s10958-005-0184-1
Bibliographic databases:
UDC: 517.948
Language: Russian
Citation: M. I. Belishev, “On relations between data of dynamical and spectral inverse problems”, Mathematical problems in the theory of wave propagation. Part 32, Zap. Nauchn. Sem. POMI, 297, POMI, St. Petersburg, 2003, 30–48; J. Math. Sci. (N. Y.), 127:6 (2005), 2353–2363
Citation in format AMSBIB
\Bibitem{Bel03}
\by M.~I.~Belishev
\paper On relations between data of dynamical and spectral inverse problems
\inbook Mathematical problems in the theory of wave propagation. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 297
\pages 30--48
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1213}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1981386}
\zmath{https://zbmath.org/?q=an:1084.35119}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 127
\issue 6
\pages 2353--2363
\crossref{https://doi.org/10.1007/s10958-005-0184-1}
Linking options:
  • https://www.mathnet.ru/eng/znsl1213
  • https://www.mathnet.ru/eng/znsl/v297/p30
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :122
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024