Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 298, Pages 304–315 (Mi znsl1210)  

This article is cited in 2 scientific papers (total in 2 papers)

Rate of convergence of increments for random fields

O. E. Shcherbakova

Saint-Petersburg State Polytechnical University
Full-text PDF (203 kB) Citations (2)
References:
Abstract: The purpose of this paper is to obtain exact convergence rate in the limit theorems for maximal increments of random fields
\begin{align} S_{N,a_{N}}&=\max\Bigl\{\sum _{i<k\leq j}X_{k}:|j|\leq N,|j-i|\leq a_{N}\Bigr\},\notag\\ S^{\star}_{N,a_{N}}&=\max\Bigl\{\sum _{i<k\leq j}X_{k}:|j|\leq N,| j-i|=a_{N}\Bigr\},\notag \end{align}
where $N\in\mathbb{N}$ and $a_{N}=c\log N+\lambda\log_{2} N+o(\log_{2} N)$, $c>c_{0}$, $\lambda\in\mathbb{R}$, $X_{n}$ is a sequence of multi-dimension indexed i.i.d. centered random variables having a finite moment generating function in right neighborhood of zero, $|n|$ is defined by multiplying of coordinates.
Received: 20.11.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 128, Issue 1, Pages 2669–2676
DOI: https://doi.org/10.1007/s10958-005-0214-z
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: O. E. Shcherbakova, “Rate of convergence of increments for random fields”, Probability and statistics. Part 6, Zap. Nauchn. Sem. POMI, 298, POMI, St. Petersburg, 2003, 304–315; J. Math. Sci. (N. Y.), 128:1 (2005), 2669–2676
Citation in format AMSBIB
\Bibitem{Shc03}
\by O.~E.~Shcherbakova
\paper Rate of convergence of increments for random fields
\inbook Probability and statistics. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 298
\pages 304--315
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2038878}
\zmath{https://zbmath.org/?q=an:1074.60062}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 128
\issue 1
\pages 2669--2676
\crossref{https://doi.org/10.1007/s10958-005-0214-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl1210
  • https://www.mathnet.ru/eng/znsl/v298/p304
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :38
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024