Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 265, Pages 202–221 (Mi znsl1199)  

The monoid of semisimple multiclasses of the group $G=G_2(K)$

M. N. Kornienko

Herzen State Pedagogical University of Russia
Abstract: Let $G$ be a group, and let $C_L,\ldots,C_K$ be a sequence of conjugacy classes of $G$. The product $C_1C_2\ldots C_K=\{c_1c_2\ldots c_k\mid c_i\in C_i\}$ is called a multiclass of $G$. Further, let $G$ be a simple algebraic group, and let $M_{cs}(G)$ be the set of closures (with respect to Zariski topology) of all multiclasses of $G$ which are generated by semisimple conjugacy classes of $G$. Then $M_{cs}(G)$ is a monoid with respect to the operation: $m_1\cdot m_2=\overline{m_1m_2}$, where $\overline m$ is the closure of $m$. In this paper we give a description of $M_{cs}(G)$ in the case $G=G_2(K)$, where $K$ is an algebraically closed field of the characteristic zero.
Received: 28.12.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 112, Issue 4, Pages 4355–4366
DOI: https://doi.org/10.1023/A:1020399020619
Bibliographic databases:
UDC: 512.8+519.4
Language: Russian
Citation: M. N. Kornienko, “The monoid of semisimple multiclasses of the group $G=G_2(K)$”, Problems in the theory of representations of algebras and groups. Part 6, Zap. Nauchn. Sem. POMI, 265, POMI, St. Petersburg, 1999, 202–221; J. Math. Sci. (New York), 112:4 (2002), 4355–4366
Citation in format AMSBIB
\Bibitem{Kor99}
\by M.~N.~Kornienko
\paper The monoid of semisimple multiclasses of the group $G=G_2(K)$
\inbook Problems in the theory of representations of algebras and groups. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 265
\pages 202--221
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1757825}
\zmath{https://zbmath.org/?q=an:1052.20029}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 112
\issue 4
\pages 4355--4366
\crossref{https://doi.org/10.1023/A:1020399020619}
Linking options:
  • https://www.mathnet.ru/eng/znsl1199
  • https://www.mathnet.ru/eng/znsl/v265/p202
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:105
    Full-text PDF :48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024