Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 265, Pages 22–28 (Mi znsl1187)  

This article is cited in 1 scientific paper (total in 1 paper)

Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module

M. V. Bondarko

St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (170 kB) Citations (1)
Abstract: In this paper we study the question when there exist non-trivial idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of finite characteristic $p>2$ as a Galois module. We prove that there are no non-trivial central idempotents for a non-abelian totally widely ramified extension.
Received: 01.11.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 112, Issue 3, Pages 4255–4258
DOI: https://doi.org/10.1023/A:1020374315167
Bibliographic databases:
UDC: 512
Language: Russian
Citation: M. V. Bondarko, “Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module”, Problems in the theory of representations of algebras and groups. Part 6, Zap. Nauchn. Sem. POMI, 265, POMI, St. Petersburg, 1999, 22–28; J. Math. Sci. (New York), 112:3 (2002), 4255–4258
Citation in format AMSBIB
\Bibitem{Bon99}
\by M.~V.~Bondarko
\paper Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic~$p$ as a Galois module
\inbook Problems in the theory of representations of algebras and groups. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 265
\pages 22--28
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1187}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1757813}
\zmath{https://zbmath.org/?q=an:1041.11080}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 112
\issue 3
\pages 4255--4258
\crossref{https://doi.org/10.1023/A:1020374315167}
Linking options:
  • https://www.mathnet.ru/eng/znsl1187
  • https://www.mathnet.ru/eng/znsl/v265/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024