Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 298, Pages 208–225 (Mi znsl1173)  

This article is cited in 3 scientific papers (total in 3 papers)

Strong limit theorems for increments of renewal processes

A. N. Frolov

Saint-Petersburg State University
Full-text PDF (241 kB) Citations (3)
References:
Abstract: We study the almost surely behavior of increments of renewal processes. We derive a universal form of norming functions in strong limit theorems for increments of such processes. This unifies the following well known theorems for increments of renewal processes: the strong law of large numbers, the Erdős–Rényi law, the Csörgő-Révész law and the law of the iterated logarithm. New results are obtained for processes with distributions of renewal times from domains of attraction of a normal law and completely asymmetric stable laws with index $\alpha\in(1,2)$.
Received: 26.02.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 128, Issue 1, Pages 2614–2624
DOI: https://doi.org/10.1007/s10958-005-0210-3
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. N. Frolov, “Strong limit theorems for increments of renewal processes”, Probability and statistics. Part 6, Zap. Nauchn. Sem. POMI, 298, POMI, St. Petersburg, 2003, 208–225; J. Math. Sci. (N. Y.), 128:1 (2005), 2614–2624
Citation in format AMSBIB
\Bibitem{Fro03}
\by A.~N.~Frolov
\paper Strong limit theorems for increments of renewal processes
\inbook Probability and statistics. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 298
\pages 208--225
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1173}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2038874}
\zmath{https://zbmath.org/?q=an:1081.60026}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 128
\issue 1
\pages 2614--2624
\crossref{https://doi.org/10.1007/s10958-005-0210-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl1173
  • https://www.mathnet.ru/eng/znsl/v298/p208
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :86
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024