Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 343, Pages 222–232 (Mi znsl117)  

This article is cited in 1 scientific paper (total in 1 paper)

$\mathcal{CS}$-indecomposable ordered semigroups

N. Kehayopulu, M. Tsingelis

National and Capodistrian University of Athens, Department of Mathematics
Full-text PDF (165 kB) Citations (1)
References:
Abstract: An ordered semigroup $S$ is called $\mathcal{CS}$-indecomposable if the set $S\times S$ is the only complete semilattice congruence on $S$. In this paper we prove that each ordered semigroup is, uniquely, complete semilattice of $\mathcal{CS}$-indecomposable semigroups, which means that it can be decomposed into $CS$-indecomposable components in a unique way. Furthermore, the $\mathcal{CS}$-indecomposable ordered semigroups are exactly the ordered semigroups which do not contain proper filters.
Received: 30.05.2007
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 147, Issue 5, Pages 7098–7104
DOI: https://doi.org/10.1007/s10958-007-0532-4
Bibliographic databases:
UDC: 512.5
Language: English
Citation: N. Kehayopulu, M. Tsingelis, “$\mathcal{CS}$-indecomposable ordered semigroups”, Problems in the theory of representations of algebras and groups. Part 15, Zap. Nauchn. Sem. POMI, 343, POMI, St. Petersburg, 2007, 222–232; J. Math. Sci. (N. Y.), 147:5 (2007), 7098–7104
Citation in format AMSBIB
\Bibitem{KehTsi07}
\by N.~Kehayopulu, M.~Tsingelis
\paper $\mathcal{CS}$-indecomposable ordered semigroups
\inbook Problems in the theory of representations of algebras and groups. Part~15
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 343
\pages 222--232
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2469419}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 147
\issue 5
\pages 7098--7104
\crossref{https://doi.org/10.1007/s10958-007-0532-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36148989509}
Linking options:
  • https://www.mathnet.ru/eng/znsl117
  • https://www.mathnet.ru/eng/znsl/v343/p222
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :69
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024