Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 343, Pages 206–221 (Mi znsl116)  

This article is cited in 3 scientific papers (total in 3 papers)

Topological $K$-groups of two-dimensional local fields

O. Yu. Ivanova

Saint-Petersburg State University
Full-text PDF (235 kB) Citations (3)
References:
Abstract: We consider a complete two-dimensional local field $K$ of mixed characteristic with finite second residue field and suppose that there exists a completely ramified extension $L$ of $K$ such that $L$ is a standard field. We prove that the rank of the quotient $U(1)K_2^{\mathrm{top}}K/T_K$, where $T_K$ is the closure of the torsion subgroup, is equal to the degree of the constant subfield of $K$ over $\mathbb Q_p$. I. B. Zhukov constructed a set of generators of this quotient in the case where $K$ is a standard field. In this paper, we consider two natural generalizations of this set and prove that one of them generates the whole group and the other generates its subgroup of finite index.
Received: 30.10.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 147, Issue 5, Pages 7088–7097
DOI: https://doi.org/10.1007/s10958-007-0531-5
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: O. Yu. Ivanova, “Topological $K$-groups of two-dimensional local fields”, Problems in the theory of representations of algebras and groups. Part 15, Zap. Nauchn. Sem. POMI, 343, POMI, St. Petersburg, 2007, 206–221; J. Math. Sci. (N. Y.), 147:5 (2007), 7088–7097
Citation in format AMSBIB
\Bibitem{Iva07}
\by O.~Yu.~Ivanova
\paper Topological $K$-groups of two-dimensional local fields
\inbook Problems in the theory of representations of algebras and groups. Part~15
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 343
\pages 206--221
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2469418}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 147
\issue 5
\pages 7088--7097
\crossref{https://doi.org/10.1007/s10958-007-0531-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36148959271}
Linking options:
  • https://www.mathnet.ru/eng/znsl116
  • https://www.mathnet.ru/eng/znsl/v343/p206
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:235
    Full-text PDF :58
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024