Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 264, Pages 44–65 (Mi znsl1158)  

This article is cited in 4 scientific papers (total in 4 papers)

The effects connected with coincidence of velocities in the two-velocities dynamical system

M. I. Belisheva, A. V. Zurovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University
Full-text PDF (342 kB) Citations (4)
Abstract: The paper deals with the system
\begin{align*} &\rho u_{tt}-u_{xx}+Vu=0,\quad x>0,\quad t>0;\\ &u|_{t=0}=u_t|_{t=0}=0;\\ &u|_{x=0} = f, \end{align*}
where $\rho=\rho(x)$ and $V=V(x)$ are $2\times2$-matrix functions; $\rho=\operatorname{diag}\{\rho_1,\rho_2\},\rho_{\alpha}>0$; $f$ is a boundary control; $u=u(x,t)$ is the solution. The singularities of the fundamental solution corresponding to the controls $\binom{\delta}0$ and $\binom0{\delta}$ ($\delta=\delta(t)$ is the Dirac $\delta$-function) are under investigation. In the case of $\rho_1(x)\ne\rho_2(x)$ the singularities of the fundamental solution are described in terms of the standard scale $\delta,\int\delta, \iint\delta,\ldots$. In the presence of points $x=x_*:\rho_1(x_*)=\rho_2(x_*)$ an interesting effect occurs: the singularities of intermediate (fractional) orders appear.
Received: 01.11.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 111, Issue 4, Pages 3645–3656
DOI: https://doi.org/10.1023/A:1016325723849
Bibliographic databases:
UDC: 517.956.3
Language: Russian
Citation: M. I. Belishev, A. V. Zurov, “The effects connected with coincidence of velocities in the two-velocities dynamical system”, Mathematical problems in the theory of wave propagation. Part 29, Zap. Nauchn. Sem. POMI, 264, POMI, St. Petersburg, 2000, 44–65; J. Math. Sci. (New York), 111:4 (2002), 3645–3656
Citation in format AMSBIB
\Bibitem{BelZur00}
\by M.~I.~Belishev, A.~V.~Zurov
\paper The effects connected with coincidence of velocities in the two-velocities dynamical system
\inbook Mathematical problems in the theory of wave propagation. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 264
\pages 44--65
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1796997}
\zmath{https://zbmath.org/?q=an:1106.35302}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 111
\issue 4
\pages 3645--3656
\crossref{https://doi.org/10.1023/A:1016325723849}
Linking options:
  • https://www.mathnet.ru/eng/znsl1158
  • https://www.mathnet.ru/eng/znsl/v264/p44
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024