|
Zapiski Nauchnykh Seminarov POMI, 2003, Volume 299, Pages 300–313
(Mi znsl1146)
|
|
|
|
Generic immersions of the two-sphere to $\mathbf R^3$ and their skeleta
M. A. Stepanova Herzen State Pedagogical University of Russia
Abstract:
Let $f\colon S^2\looparrowright\mathbb R^3$ be a generic smooth immersion. The skeleton of $f$ is the following triple $(\Gamma, D, p)$. $\Gamma$ is the 1-polyhedron of singular points of $f$, $D=f^{-1}(\Gamma)$ is also a 1-polyhedron, and $p\colon D\to\Gamma$, $x\mapsto f(x)$, is the projection. For triples of the form $(D,\Gamma, p)$, where $\Gamma$ has at most 4 vertices, we give an iff-condition under which the triple is the skeleton of a smooth immersion $f\colon S^2\looparrowright\mathbb R^3$.
Received: 31.01.2003
Citation:
M. A. Stepanova, “Generic immersions of the two-sphere to $\mathbf R^3$ and their skeleta”, Geometry and topology. Part 8, Zap. Nauchn. Sem. POMI, 299, POMI, St. Petersburg, 2003, 300–313; J. Math. Sci. (N. Y.), 131:1 (2005), 5428–5437
Linking options:
https://www.mathnet.ru/eng/znsl1146 https://www.mathnet.ru/eng/znsl/v299/p300
|
Statistics & downloads: |
Abstract page: | 269 | Full-text PDF : | 64 | References: | 59 |
|