|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 263, Pages 226–236
(Mi znsl1144)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
The distribution of lattice points on the four-dimensional sphere
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $r_l(n)$ be the number of representations of $n$ by a sum of $l$ squares of integers and let $0<A<1$ be a constant. It is proved that if $(n,2)=1$, then $\sum_{-A\le w/\sqrt n\le A} r_3(n-w^2)=\mu_4(A)r_4(n)+O(n^{1487/2000}),\mu_4(A)>0$. Previously, the author obtained this asymptotics with a weaker error term $O(n^{3/4+\varepsilon})$.
Received: 15.12.1999
Citation:
O. M. Fomenko, “The distribution of lattice points on the four-dimensional sphere”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 226–236; J. Math. Sci. (New York), 110:6 (2002), 3164–3170
Linking options:
https://www.mathnet.ru/eng/znsl1144 https://www.mathnet.ru/eng/znsl/v263/p226
|
Statistics & downloads: |
Abstract page: | 207 | Full-text PDF : | 63 |
|